Ranges: the STL to the Next Level—Jonathan Boccara

Ranges are coming!

Ranges: the STL to the Next Level

by Jonathan Boccara

From the article:

The C++ Standard Template Library (STL) is a fantastic tool for making code more correct and expressive. It is mainly composed of two parts:

  • The containers, such as std::vector or std::map for instance,
  • The algorithms, a fairly large collection of generic functions that operate amongst others on containers. They are mostly found under the algorithm header.

A “sorted view”—Nick Athanasiou

Sorting can be done many ways.

A “sorted view”

by Nick Athanasiou

From the article:

This installment elaborates on the creation of a “sorted_view” utility. The “References” section contains links to the complete code; throughout the article, we provide demos and snippets to showcase and explain the implementations. The section on modernizing the code contains real world applications of the following C++17 features:

  1. structured bindings
  2. template argument deduction for class templates

Order Your Members

How ordering members can impact performance.

Order Your Members

by Jonas Devlieghere

From the article:

The article highlights the impact that different choices regarding the ordering of members in a struct can have on the performance of your code. A lot can be achieved by taking into account some general guidelines.

(Not) detecting bugs—Andrzej Krzemieński

Undefined behaviour can be dangerous.

(Not) detecting bugs

by Andrzej Krzemieński

From the article:

The following code contains a bug. A developer has spent quite some time looking for the source. The intent of this code is to iterate over two vectors simultaneously, from the first up to the one-before-last element. Thus the most interesting tools that will be employed will be boost::zip_iterator and std::prev.

#include <boost/iterator/zip_iterator.hpp>
#include <boost/tuple/tuple.hpp>
#include <vector>

using zip_iter = boost::zip_iterator<
int main()
  std::vector<int> v1 = {1, 2, 3, 4, 0};
  std::vector<int> v2 = {2, 3, 5, 7, 0};
  zip_iter beg {boost::make_tuple(v1.begin(), v2.begin())};
  zip_iter end {boost::make_tuple(v1.end(), v2.end())};
  auto process = [](zip_iter::reference){};
  std::for_each(beg, std::prev(end), process);