concurrency

HPX V1.7.1 released -- STE||AR Group

The STE||AR Group has released V1.7.1 of HPX -- A C++ Standard library for parallelism and concurrency.

HPX V1.7.1 Released

The newest version of HPX (V1.7.1) is now available for download! This release fixes minor problems found after the version 1.7.0. It fixes a bug in the internals of actions, adds a version check to the new Asio dependency, and slightly improves the performance of spinlocks among other minor changes. Importantly, the experimental hpx::execution::simdpar execution policy introduced in 1.7.0 was renamed to hpx::execution::par_simd for consistency with the standard parallel execution policies. While this is a breaking change in a patch release, we felt it was important to make this adaptation as soon as possible. The full list of improvements, fixes, and breaking changes can be found in the release notes.

    HPX is a general purpose parallel C++ runtime system for applications of any scale. It implements all of the related facilities as defined by the C++ Standard. As of this writing, HPX provides one of the only widely available open-source implementation of the new C++17 parallel algorithms. Additionally, HPX implements functionalities proposed as part of the ongoing C++ standardization process, such as large parts of the features related parallelism and concurrency as specified by the upcoming C++20 Standard, the C++ Concurrency TS, Parallelism TS V2, data-parallel algorithms, executors, senders/receivers and many more. It also extends the existing C++ Standard APIs to the distributed case (e.g. compute clusters) and for heterogeneous systems (e.g. GPUs).

    HPX seamlessly enables a new Asynchronous C++ Standard Programming Model that tends to improve the parallel efficiency of our applications and helps reducing complexities usually associated with parallelism and concurrency.

 

HPX V1.7.0 released -- STE||AR Group

The STE||AR Group has released V1.7.0 of HPX -- A C++ Standard library for parallelism and concurrency.

HPX V1.7.0 Released

The newest version of HPX (V1.7.0) is now available for download! This release continues the focus on C++20 conformance with multiple new algorithms adapted to be C++20 conformant and becoming customization point objects (CPOs). We’ve also added experimental support for using GCC’s SIMD data types with our parallel algorithms. Finally, we've implemented a large subset of sender/receiver functionality based on current proposals (mainly P0443, P1897, and P2300). HPX futures fulfill the sender concept, and senders can explicitly be turned into futures, which means that codebases can gradually adopt senders where appropriate. The full list of improvements, fixes, and breaking changes can be found in the release notes.

    HPX is a general purpose parallel C++ runtime system for applications of any scale. It implements all of the related facilities as defined by the C++ Standard. As of this writing, HPX provides one of the only widely available open-source implementation of the new C++17 parallel algorithms. Additionally, HPX implements functionalities proposed as part of the ongoing C++ standardization process, such as large parts of the features related parallelism and concurrency as specified by the upcoming C++20 Standard, the C++ Concurrency TS, Parallelism TS V2, data-parallel algorithms, executors, senders/receivers and many more. It also extends the existing C++ Standard APIs to the distributed case (e.g. compute clusters) and for heterogeneous systems (e.g. GPUs).

    HPX seamlessly enables a new Asynchronous C++ Standard Programming Model that tends to improve the parallel efficiency of our applications and helps reducing complexities usually associated with parallelism and concurrency.

 

HPX V1.6.0 released -- STE||AR Group

The STE||AR Group has released V1.6.0 of HPX -- A C++ Standard library for parallelism and concurrency.

HPX V1.6.0 Released

The newest version of HPX (V1.6.0) is now available for download! This release continues the focus on C++20 conformance with multiple new algorithms adapted to be C++20 conformant and becoming customization point objects (CPOs). We have added experimental support for HIP, allowing existing CUDA features to now be compiled with hipcc and run on AMD GPUs as well. We have also continued improving the performance of the parallel executors, and added an experimental fork-join executor. The full list of improvements, fixes, and breaking changes can be found in the release notes.

    HPX is a general purpose parallel C++ runtime system for applications of any scale. It implements all of the related facilities as defined by the C++ Standard. As of this writing, HPX provides the only widely available open-source implementation of the new C++17 parallel algorithms. Additionally, HPX implements functionalities proposed as part of the ongoing C++ standardization process, such as large parts of the features related parallelism and concurrency as specified by the upcoming C++20 Standard, the C++ Concurrency TS, Parallelism TS V2, data-parallel algorithms, executors, and many more. It also extends the existing C++ Standard APIs to the distributed case (e.g. compute clusters) and for heterogeneous systems (e.g. GPUs).

    HPX seamlessly enables a new Asynchronous C++ Standard Programming Model that tends to improve the parallel efficiency of our applications and helps reducing complexities usually associated with parallelism and concurrency.

 

HPX V1.5.1 released -- STE||AR Group

The STE||AR Group has released V1.5.1 of HPX -- A C++ Standard library for parallelism and concurrency.

HPX V1.5.1 Released

The newest version of HPX (V1.5.1) is now available for download! This is a relatively small bug-fix release that fixes some problems we discovered in the 1.5.0 release.

    HPX is a general purpose parallel C++ runtime system for applications of any scale. It implements all of the related facilities as defined by the C++ Standard. As of this writing, HPX provides the only widely available open-source implementation of the new C++17 parallel algorithms. Additionally, HPX implements functionalities proposed as part of the ongoing C++ standardization process, such as large parts of the features related parallelism and concurrency as specified by the upcoming C++20 Standard, the C++ Concurrency TS, Parallelism TS V2, data-parallel algorithms, executors, and many more. It also extends the existing C++ Standard APIs to the distributed case (e.g. compute clusters) and for heterogeneous systems (e.g. GPUs).

    HPX seamlessly enables a new Asynchronous C++ Standard Programming Model that tends to improve the parallel efficiency of our applications and helps reducing complexities usually associated with parallelism and concurrency.

 

HPX V1.5 released -- STE||AR Group

The STE||AR Group has released V1.5 of HPX -- A C++ Standard library for parallelism and concurrency.

HPX V1.5 Released

The newest version of HPX (V1.5) is now available for download! This is a big release with many changes and improvements. We have added numerous new features, adapted a lot of facilities to improve C++20 conformance. We have also continued our work on modularizing and making HPX lighter, improved its usability, stability, and performance. Please see here for full release notes.

    HPX is a general purpose parallel C++ runtime system for applications of any scale. It implements all of the related facilities as defined by the C++ Standard. As of this writing, HPX provides the only widely available open-source implementation of the new C++17 parallel algorithms. Additionally, HPX implements functionalities proposed as part of the ongoing C++ standardization process, such as large parts of the features related parallelism and concurrency as specified by the upcoming C++20 Standard, the C++ Concurrency TS, Parallelism TS V2, data-parallel algorithms, executors, and many more. It also extends the existing C++ Standard APIs to the distributed case (e.g. compute clusters) and for heterogeneous systems (e.g. GPUs).

    HPX seamlessly enables a new Asynchronous C++ Standard Programming Model that tends to improve the parallel efficiency of our applications and helps reducing complexities usually associated with parallelism and concurrency.

 

There Is A New Future -- Felix Petriconi

Version 1.0 of a new C++ future and channel library has been released.

There Is A New Future

by Sean Parent, Foster Brereton and Felix Petriconi

About the library:

This library provides high level abstractions for implementing algorithms that eases the use of multiple CPU cores while minimizing the contention.

The future implementaton differs in several aspects compared to the C++11/14/17 standard futures: It provides continuations and joins, which were just added in a C++17 TS. But more important this futures propagate values through the graph and not futures. This allows an easy way of creating splits. That means a single future can have multiple continuations into different directions. An other important difference is that the futures support cancellation. So if one is not anymore interested in the result of a future, then one can destroy the future without the need to wait until the future is fullfilled, as it is the case with std::future (and boost::future). An already started future will run until its end, but will not trigger any continuation. So in all these cases, all chained continuations will never be triggered. Additionally the future interface is designed in a way, that one can use build in or custom build executors.

Since one can create with futures only graphs for single use, this library provides as well channels. With these channels one can build graphs, that can be used for multiple invocations.