C++ semantics

The PVS-Studio Team invite you to the webinar. Date: November 06, 2024, 12:00 PM UTC+1.

C++ semantics

by Yuri Minaev

Summary of the talk:

In this talk on the С++ semantics, we will take a look at symbols and name resolution. We will discuss different kinds of lookups, scope importing, overload resolution, as well as templates and their specifics. Speaker: Yuri Minaev.

Write Modern Code with Features of C++17 and C++20 -- Andreas Fertig

me.pngWhen you transition from older C++ standards like C++11 or C++14 to the latest C++17 and C++20 it can be a tough journey. It's essential for writing clean and easy-to-maintain code, but many developers find the process challenging.

Write Modern Code with Features of C++17 and C++20

by Andreas Fertig

From the article:

Here are three common hurdles:

1. Variety of New Features

Adapting to C++17 and C++20 can be intimidating. As the latest standards offer a wide range of new features and syntax changes. One such feature is the introduction of structured bindings in C++17, which represents a shift from how variables were traditionally declared and accessed.

Old Way (C++14 and Earlier):

Before C++17, when you needed to unpack values from a pair or a tuple, you would typically do something like this:

fertigmodencode.png

Here, you need to use std::get<>() to access each element of the tuple, which is both verbose and less intuitive, especially when dealing with more complex data structures.

C++ Compile-Time Programming -- Yongwei Wu

<img alt="ACCU" data-cke-saved-src="https://isocpp.org/files/img/logo.png" src="https://isocpp.org/files/img/logo.png" 225px;="" height:="" 60px;="" float:="" right;"="" style="float: right;">Programming at compile time has been possible in C++ for a long time. Yongwei Wu considers its past, present, and future.

C++ Compile-Time Programming

by Yongwei Wu

From the article:

Compile-time programming is a key feature of C++. It enables writing high-performance code often unattainable in other languages. This article explores its past, present, and future applications, highlighting the diverse possibilities in C++. We’ll briefly cover template metaprogramming, constexpr, variadic templates, static reflection, and more.

 

How To Convert Unicode Strings to Lower Case and Upper Case in C++ -- Giovanni Dicanio

Converting Unicode strings to lower and upper cases should be an easy task to accomplish. Unfortunately, that is not the case with C++. Even the so common approach of iterating "char-by-char" in the input string and invoking std::tolower/toupper is wrong. Let's discuss a possible solution to this problem in this article:

How To Convert Unicode Strings to Lower and Upper Case in C++

by Giovanni Dicanio

From the article:

[...] A possible solution to properly convert Unicode strings to lower and upper cases in Windows C++ code is to use the LCMapStringEx Windows API. This is a low-level C interface API.

I wrapped it in higher-level convenient reusable C++ code, available here on GitHub. I organized that code as a header-only library: you can simply include the library header, and invoke the ToStringLower and ToStringUpper helper functions.

 

What is std::ref? -- Sandor Dargo

SANDOR_DARGO_ROUND.JPGWhen working with C++ standard containers and functions, handling references can sometimes lead to unexpected behavior, particularly with copy semantics. This is where std::ref and std::cref come into play, allowing you to store references in containers and pass them safely to template functions like std::bind or std::thread.

What is std::ref?

by Sandor Dargo

From the article:

Have you heard about std::ref and std::cref? The helper functions that generate objects of type std::reference_wrapper? The answer is probably yes. In that case, this article is probably not for you. But if you haven’t heard about them, or the only usage of std::reference_wrapper you faced was storing references in a vector, then probably it’s worth reading on.

This article is inspired by some failing tests that needed me to use std::ref in order to pass them.

What does reference_wrapper do?

A reference of an object T (T&) is not copy assignable. On the other hand, std::reference_wrapper<T> which emulates T& it both copy-constructible and copy-assignable. It’s even trivially copyable, so copying can take place on a byte level which makes it very efficient.

So when should we use such a wrapper?

Learn Modern C++ at Meeting C++ 2024!

A post highlighting some of the talks that let you learn about Modern C++ at Meeting C++ 2024

Learn Modern C++ at Meeting C++ 2024

by Jens Weller

From the article:

I think this is what should you get excited the most, C++20 is making its way through the compiler implementations and you actually can apply this to your own code base. The top voted talk this year reflects this, in C++ Modules - getting started today Andreas Weis will show you how Modules are now available with the big 3 compilers.

...

Trainings at Meeting C++

After Meeting C++ 2024 there is a trainings week in the last week of November, you an choose between trainings from Kevlin Henney, Slobodan Dimtrovic and Nicolai Josuttis:

    Programming with Guts by Kevlin Henney
    C++ for C Developers - Migrating from C to C++ by Slobodan Dimtrovic
    Generic programming in C++ with templates and auto by Nico Josuttis
    Concepts, Ranges, and Views - The New Way of Programming in C++ by Nico Josuttis

 

Constructing Nodes of a Hand-made Linked List, How Hard Can it Be? -- Raymond Chen

RaymondChen_5in-150x150.jpgWhen designing a circular doubly-linked list, the initial challenge is determining how to manage the construction of new nodes in relation to existing ones. While constructors seem like a natural fit for placing nodes before or after a given node, overloading them can lead to ambiguity and poor design choices. Instead, using distinct tag types or factory methods provides clearer intent, ensuring flexibility while respecting the constraints of guaranteed copy elision for node addresses.

Constructing Nodes of a Hand-made Linked List, How Hard Can it Be?

by Raymond Chen

From the article:

Suppose you are writing your own circular doubly-linked list structure.

struct node
{
    node* prev;
    node* next;
};

A natural choice for the default constructor is to make the node the sole element of a circular doubly-linked list.

struct node
{
    node* prev = this;
    node* next = this;
};

What if you also want to add a node after an existing node? Well, we could add a constructor for that.

struct node
{
    node* prev = this;
    node* next = this;

    node() = default;

    // Construct a node after a specific node
    node(node* other) : 
     prev(other), 
     next(other->next) 
    { 
     prev->next = this; 
     next->prev = this; 
    } 
};

(Note that the “construct after another node” constructor takes the other node by pointer, rather than by reference, so that it won’t be mistaken for a copy constructor.)

But maybe you also want to have a “before” constructor that inserts the new node before an existing node...

What's So Hard About Class Types as Non-type Template Parameters? -- Barry Revzin

revzin200930.pngPreviously, I tried to answer the question: what’s so hard about constexpr allocation?. Today, we continue what will become a series of posts about attempting to explain the issues behind a bunch of hard problems we’re trying to solve. The next problem: class types as non-type template parameters.

What's So Hard About Class Types as Non-type Template Parameters?

by Barry Revzin

From the article:

Before C++20, the only types you could use as non-type template parameters were scalar types (like int and enums, but not floating point), pointers (including pointers-to-members), and references. Notably, not class types.

Floating point types were also added in C++20.

The hard question about handling class types is: how do you determine template argument equivalence? Class types can define their own equality. But you don’t really want to rely on that, since now matching specializations becomes a quadratic problem — you can’t really do much when determining the instantiation for some template f<x> other than looping through every other value vi to see if x == vi.

The other problem is we need == to really be strong enough. One very easy problem to run into in this space is violating the One Definition Rule (ODR). One essential, core requirement for templates is that instantiating the same template with the same arguments has to yield the same code.

 

Highlighting the student and support tickets for Meeting C++ 2024

Meeting C++ offers free online and onsite tickets through their student and support programs. This is supported through the ticket sales for Meeting C++ 2024.

Highlighting the student and support tickets for Meeting C++ 2024

by Jens Weller

From the article:

Like every year, I'd like to point towards the programs for those that can't afford to pay for a ticket for Meeting C++ 2024.

And let me start with thanking those that enable these programs through their ticket buying: the attendees and sponsors of Meeting C++ 2024! With the schedule published, I'd like to highlight the student and support tickets for Meeting C++ 2024. For a few years now Meeting C++ has hosted programs to give students, underrepresented folks and those who can't afford a ticket access to the conference.

This year for the first time you can choose to register either for onsite or online for these programs. A limited amount of tickets for Berlin will be available, depending on the ticket sale in October. So incase you registered for onsite but are not chosen for a ticket, then you'll have a chance to an online ticket...