May 2025

Speeding up C++ Code with Template Lambdas -- Daniel Lemire

image-16-825x510.jpgInteger division is one of the most expensive operations in C++, but when the divisor is known at compile time, the compiler can optimize it significantly. This post explores different approaches—using templates, lambda expressions, and template metaprogramming—to speed up division while maintaining clean and efficient code.

Speeding up C++ Code with Template Lambdas

by Daniel Lemire

From the article:

Let us consider a simple C++ function which divides all values in a range of integers:

void divide(std::span<int> i, int d) {
 for (auto& value : i) {
 value /= d;
 }
}

A division between two integers is one of the most expensive operations you can do over integers: it is much slower than a multiplication which is, in turn, more expensive than an addition. If the divisor d is known at compile-time, this function can be much faster. E.g., if d is 2, the compiler might optimize away the division and use a shift and a few cheap instructions instead. The same is true with all compile-time constant: the compiler can often do better knowing the constant. (See Lemire et al., Integer Division by Constants: Optimal Bounds, 2021)

GCC 15 is now available, with support for more draft C++26 features

gccegg-65.pngGCC 15 is now available!

Here are some highlights from the release notes' C++ section:

  • C++ Modules have been greatly improved.
  • Compilation time speed ups, e.g. by improving hashing of template specializations.

... and more, see the release notes.

C++26: Removing Language Features -- Sandor Dargo

SANDOR_DARGO_ROUND.JPGC++ is often seen as an ever-growing language, with each new standard introducing powerful features while maintaining backward compatibility. However, C++26 takes a step toward simplification by officially removing deprecated features, including implicit arithmetic conversions for enumerations and direct comparisons of C-style arrays, both of which previously led to unintended behavior.

C++26: Removing Language Features

by Sandor Dargo

From the article:

Probably you all heard that C++ is an ever-growing language - I wrote so many times as well. Each standard indeed comes with a great bunch of highly-anticipated features. At the same time, due to binary compatibility considerations, very few old features are removed. This has several implications:

  • we have probably more than one way to do something
  • the standard keeps growing

This is true, but let’s not forget that each new standard removes some features. In this post, let’s review what are the language features that are removed in C++26 and in a later post, we’ll have a look at the removed library features.

At this point, it’s worth mentioning that a removal from the language usually happens in two steps. First a feature gets deprecated, meaning that its users would face compiler warnings for using deprecated features. As a next step, which in some cases never comes, the compiler support is finally removed.