
Sizes Should Only span Unsigned

P1089R2
Attention: LEWG
Date: 6/8/2018

Authors:
Robert Douglas <rwdougla at gmail dot com>
Nevin Liber <nevin at cplusplusguy dot com>
Marshall Clow <mclow.lists at gmail dot com>

Introduction
P1089 was discussed in Rapperswil in 2018 in LEWG. 3 straw polls were taken with a clear
majority supporting changing span’s size to be an unsigned type. However, the majority was at
the edge of ‘consensus,’ and so the interpretation was that there was no consensus for a
change. However, the state this leaves span in, is where the majority of the committee believes
there is a problem, yet we are held to a smaller straw poll done 2 years prior, with no real
consensus on how the feature should be. This paper adds context from Rapperswil and
presents an additional proposal to add a ssize() free function.

The aim of this paper is to ultimately help the committee find consensus on span::size_type and
the future of size types in C++.

Background

Previous Design Discussions
LEWG took a single straw poll on the subject, in Jacksonville in 2016.

From the minutes:

Happy with signed index_type returned by size()?
SF F N A SA

1 6 3 3 1

No minutes since have shown any additional straw polls, though the topic has come up
repeatedly. Each time, discussion was shut down before any new straw polls were taken.

7 to 4 is not generally a strong indication of consensus. 7 to 7 is not even a majority in favor.
That no follow up discussion and debate have been allowed to happen since should cause
alarm.

Rapperswil 2018
Discussion of the previous version of this paper was done in Rapperswil with votes taken in
LEWG.

LEWG Straw Poll #1: Do as the paper directs (option 1) - change span::index_type to size_t
(and thus change span::size() accordingly)?
SF F N A SA

8 7 1 4 5

LEWG Straw Poll #2: Would we like to investigate adding ssize() in some fashion?

S
F

F N A SA

7 12 2 1 0

LEWG Straw Poll #3: Do as the paper directs (option 1) and Forward to LWG for C++20?

S
F

F N A SA

12 3 1 5 5

From the minutes:
(After discussion with the various subgroup chairs, the above is insufficient consensus for
change. The topic will be raised in plenary and we will float the option to have an
exhausting/time-consuming evening session in San Diego.)

State of Span
span has a particularly unique feature, the template parameter Extent . This parameter is
signed and given a special value of -1 , in order to indicate that this view has a run-time
provided size. Otherwise, the size of the view is that of this parameter. This is similar to
basic_string_view ’s npos , except that basic_string_view::npos is unsigned.

As Extent is signed, so is span::index_type .

User Feedback
An important part of the process, especially when skipping putting a new feature first into a TS,
is to solicit for community feedback and reopen discussions based on that feedback.

From experience in integrating span into a production code base, it is observable that conflicts
between span::index_type versus vector , string_view , and sizeof(T) are
prevalent. Changing span::index_type to size_t reduces the number of static_cast s
needed for type conversion warnings by about 90-95% in this code base. The single remaining
source of most conversions is with Posix’s read() function, which returns a count of bytes, or a
negative number as an error code.

Also, GSL’s span tests incorporate 33 uses of narrow_cast , to convert various container
sizes to ptrdiff_t for comparisons.

Even the current C++ Working Draft (N4741) needs normative wording utilizing static_cast
to make as_bytes and as_writeable_bytes work. This is done for conversions to
Extent , but the problem becomes quickly obvious with a decent warning level.

We understand the desire to use a signed type, because in C++ the unsigned integer types
have closed arithmetic (it wraps) while the signed integer types do not. However, both sizeof
and the standard library long ago chose unsigned types (usually size_t) to represent sizes
and the only thing worse than using a type with closed arithmetic is mixing types. This both
breaks consistency with the rest of the standard library and is a pain point due to all the casting
required to use it.

Examples

Handling Network Traffic
class MyMessageHeader {};
void handleMessage(span< const char > message)

{

 // Warning : Comparison of signed and unsigned types
 if (message.size() >= sizeof (MyMessageHeader))
 {

 MyMessageHeader const * hdr
 = reinterpret_cast <MyMessageHeader const *>(message.data());
 }

}

Bytes to ASCII text
class Key {};
Key getKey(span< char const > orig);

span< char const > getValue(span< char const > orig);
enum class ValueType { Text, Binary };
ValueType valueType(Key key) { return ValueType::Text; }

template < typename HandlerT>
void parse(span< char const > buffer, HandlerT handler)
{

 Key key = getKey(buffer);

 span< const char > value = getValue(buffer);
 switch (valueType(key))
 {

 case ValueType::Text:
 // Warning : narrowing conversion
 handler(string_view{value.data(), value.size()});

 case ValueType::Binary: // Omitted for brevity
 break ;
 }

}

Design Discussion
3 options should be considered:

1) Change index_type to be unsigned. Suggest: size_t to directly match
basic_string_view::size_type .

2) Change both index_type and Extent to be unsigned. Make dynamic_extent
numeric_limits<index_type>::max()

3) As another option, we may consider breaking out dynamic span into a separate type
and remove dynamic_extent altogether, however that wording is not provided at this
time.

4) (Another option would be to take this out of C++20 and put it in Lib Fund, but I’m not
sure we dare actually say that)

Option 1 is the simplest means, given the state of N4741, to get type of size() back in line
with the rest of the standard. However, it also creates a discrepancy internal to span<> , via
Extent as size() .
Option 2 builds upon Option 1 and gets span in full parity to the rest of the standard, but is
simply a larger design change. From the changes to the proposed wording, though, this an
overall simplification of the specification through simplified requirements, eliminated ill-formed
condition, and removed static_cast s.
Option 3 can be taken in addition to either Option 1 or Option 2, or held entirely standalone. This
was asked for by LEWG and so presented, here.

Proposal 1
Change span synopsis [span.overview] paragraph 5
using index_type = ptrdiff_t size_t ;

Proposal 2
Change [span.syn]
inline constexpr ptrdiff_t size_t dyanmic_extent =
-1 numeric_limits<size_t>::max() ;
template<class ElementType, ptrdiff_t Extent = dynamic_extent>

class span;

template<class T, ptrdiff_t size_t X, class U, ptrdiff_t size_t Y>
constexpr bool operator==(span<T, X> l, span<U, Y> r);

template<class T, ptrdiff_t size_t X, class U, ptrdiff_t size_t Y>
constexpr bool operator!=(span<T, X> l, span<U, Y> r);

template<class T, ptrdiff_t size_t X, class U, ptrdiff_t size_t Y>
constexpr bool operator<(span<T, X> l, span<U, Y> r);

template<class T, ptrdiff_t size_t X, class U, ptrdiff_t size_t Y>
constexpr bool operator<=(span<T, X> l, span<U, Y> r);

template<class T, ptrdiff_t size_t X, class U, ptrdiff_t size_t Y>
constexpr bool operator>(span<T, X> l, span<U, Y> r);

template<class T, ptrdiff_t size_t X, class U, ptrdiff_t size_t Y>

constexpr bool operator>=(span<T, X> l, span<U, Y> r);

template<class ElementType, ptrdiff_t size_t Extent>
span<const byte,

Extent == dynamic_extent ? dynamic_extent

: static_cast<ptrdiff_t>(sizeof(ElementType)) * Extent>
as_bytes(span<ElementType, Extent> s) noexcept;

template<class ElementType, ptrdiff_t Extent>

span<byte,

Extent == dynamic_extent ? dynamic_extent

: static_cast<ptrdiff_t>(sizeof(ElementType)) * Extent>
as_writable_bytes(span<ElementType, Extent> s) noexcept;

Change span synopsis [span.overview]

3 If Extent is negative and not equal to dynamic_extent, the program is ill-formed.

template<class ElementType, ptrdiff_t size_t Extent = dynamic_extent>
class span {

using index_type = ptrdiff_t size_t ;

template<class OtherElementType, ptrdiff_t size_t OtherExtent>
constexpr span(const span<OtherElementType, OtherExtent>& s)

noexcept;

template< ptrdiff_t size_t Count>
constexpr span<element_type, Count> first() const;

template< ptrdiff_t size_t Count>
constexpr span<element_type, Count> last() const;

template< ptrdiff_t size_t Offset, ptrdiff_t size_t Count =
dynamic_extent>

constexpr span<element_type, see below > subspan() const;

Change [span.sub]

template< ptrdiff_t size_t Count> constexpr span<element_type, Count>
first() const;

1. Requires: 0 <= Count && Count <= size().

template< ptrdiff_t size_t Count> constexpr span<element_type, Count>
last() const;

3. Requires: 0 <= Count && Count <= size().

template< ptrdiff_t size_t Offset, ptrdiff_t size_t Count =
dynamic_extent>

constexpr span<element_type, see below > subspan() const;
5. Requires:
(0 <= Offset && Offset <= size())
&& (Count == dynamic_extent || Count >= 0 && Offset + Count <= size())

8. Requires: 0 <= count && count <= size().

10. Requires: 0 <= count && count <= size().

12. Requires:
(0 <= offset && offset <= size())
&& (count == dynamic_extent || count >= 0 && offset + count <=
size())

Change [spam.elem]
1. Requires: 0 <= idx && idx < size().

Change [span.comparison]
template<class T, ptrdiff_t size_t X, class U, ptrdiff_t size_t Y>
constexpr bool operator==(span<T, X> l, span<U, Y> r);

template<class T, ptrdiff_t size_t X, class U, ptrdiff_t size_t Y>
constexpr bool operator!=(span<T, X> l, span<U, Y> r);

template<class T, ptrdiff_t size_t X, class U, ptrdiff_t size_t Y>
constexpr bool operator<(span<T, X> l, span<U, Y> r);

template<class T, ptrdiff_t size_t X, class U, ptrdiff_t size_t Y>
constexpr bool operator<=(span<T, X> l, span<U, Y> r);

template<class T, ptrdiff_t size_t X, class U, ptrdiff_t size_t Y>
constexpr bool operator>(span<T, X> l, span<U, Y> r);

template<class T, ptrdiff_t size_t X, class U, ptrdiff_t size_t Y>
constexpr bool operator>=(span<T, X> l, span<U, Y> r);

Change [span.objectrep]
template <class ElementType, ptrdiff_t size_t Extent>
span<const byte,

Extent == dynamic_extent ? dynamic_extent

: static_cast<ptrdiff_t>(sizeof(ElementType)) * Extent>
as_bytes(span<ElementType, Extent> s) noexcept;

template<class ElementType, ptrdiff_t Extent>

span<byte,

Extent == dynamic_extent ? dynamic_extent

: static_cast<ptrdiff_t>(sizeof(ElementType)) * Extent>
as_writable_bytes(span<ElementType, Extent> s) noexcept;

Proposal 3
Add a subsection to [iterator.container]:

template<class C> constexpr ptrdiff_t ssize(const C& c);

Returns: static_cast<ptrdiff_t>(c.size()) .

