
Constexpr in std::pointer_traits

Document #: P1006R0
Date: 2018-04-01
Project: Programming Language C++
Audience: LEWG
Reply-to: Louis Dionne <ldionne.2@gmail.com>

1 Abstract

As part of the constexpr reflection effort, and in particular making std::vector constexpr, we
need to make std::pointer_traits constexpr (it is used in the implementation).

2 Difficulties

The standard currently defines a base template std::pointer_traits and a specialization of it for
raw pointers (std::pointer_traits<T*>). Marking the base template as constexpr would imply
that all specializations of it need to be marked constexpr too, since specializations of templates
in namespace std for user-defined types need to retain the same interface as the base template.
Indeed, per [namespace.std] 20.5.4.2.1/1 in [N4727]:

The behavior of a C++ program is undefined if it adds declarations or definitions to
namespace std or to a namespace within namespace std unless otherwise specified. A
program may add a template specialization for any standard library template to name-
space std only if the declaration depends on a user-defined type and the specialization
meets the standard library requirements for the original template and is not explicitly
prohibited.

However, forcing all specializations of std::pointer_traits to be marked constexpr will preclude
useful fancy pointer implementations from using it, such as offset_ptr. offset_ptr is a pointer
represented as an offset from this, which is used in memory mapped files and similar contexts.
The problem with offset_ptr is that it uses a reinterpret_cast internally, which isn’t allowed
in constant expressions (and the barrier to allowing that is very high).

So marking the base template constexpr is not an option without changing [namespace.std].
The only other option is to mark the specialization of std::pointer_traits for raw pointers
(std::pointer_traits<T*>) as constexpr, which does not seem to validate [namespace.std]
because it is not a user-provided specialization.

Also note that in practice, we don’t expect (and have no use for) std::vector being constexpr-
friendly for allocators other than the default allocator, which means that we don’t really care about
making more than std::pointer_traits<T*> constexpr. This is the direction this paper takes.

1

mailto:ldionne.2@gmail.com


3 Proposed wording

This wording is based on the working draft [N4727]. Change in [pointer.traits] 23.10.3/1:
namespace std {

template<class Ptr> struct pointer_traits {
using pointer = Ptr;
using element_type = see below ;
using difference_type = see below ;

template<class U> using rebind = see below ;

static pointer pointer_to(see below r);
};

template<class T> struct pointer_traits<T*> {
using pointer = T*;
using element_type = T;
using difference_type = ptrdiff_t;

template<class U> using rebind = U*;

static constexpr pointer pointer_to(see below r) noexcept;
};

}

4 Acknowledgements

Thanks to Ion Gaztañaga for discussing the troubles of offset_ptr and constexpr with me.

5 References

[N4727] Richard Smith, Working Draft, Standard for Programming Language C++
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4727.pdf

2

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4727.pdf

	1 Abstract
	2 Difficulties
	3 Proposed wording
	4 Acknowledgements
	5 References

