Feedback on P0214

Document Number P0820R2

Date 2018-02-06
Reply-to Tim Shen <timshen91@gmail.com>
Audience SG1, LEWG

Abstract

We investigated some of our SIMD applications and have some feedback on P0214R?7.

This proposal does not intend to slow down P0214R7 from getting into the TS, but points out the
flaws that are likely to encounter sooner or later. Fixing these flaws now is supposed to save
time for the future.

Revision History

P0820R1 to PO820R2

e Rebased onto P0214R7.
e Extended static_simd_cast and simd_cast to use rebind_abi_t.
e Change simd_abi::scalar to an alias.

P0O820R0 to PO820R1

Rebased onto P0214R6.
Added reference implementation link.
For concat() and split(), instead of making them return simd types with implementation
defined ABIs, make them return rebind_ab1i_t<...>, which is an extension and
replacement of original abi_for_size_t.
Removed the default value of "'n” in split_by().
Removed discussion on relational operators. Opened an issue for it
(https://issues.isocpp.org/show_bug.cgi?id=401).

e Proposed change to fixed_size from a struct to an alias, as well as guaranteeing the
alias to have deduced-context.

mailto:timshen91@gmail.com
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0214r7.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0214r7.pdf
https://issues.isocpp.org/show_bug.cgi?id=401

Is abi_for_size t the right way to specify the ABIs for split() and
concat()?

Currently, the return types of split() and concat() don't depend on the input ABI(s) other than
for calculating sizes. This limits the implementation by enforcing the following expressions to
produce the same type of objects:

e concat(native_simd<int32>())
e concat(compatible_simd<int32>(), compatible_simd<int32>())

Suppose that compatible_simd<int32> is implemented by 16-bytes, XMM registers on x86; and
native_simd<int32> is implemented by 32-bytes, YMM registers on x86. Ideally, we'd like both
concat()s to be no-ops, if they are allowed to return different types: in the first case the return
value stays in the same YMM register; in the second case, the returned values still stay in the
same XMM registers.

To make both calls no-ops, the return types of those two need to be different.
That said, it may not practically matter in the function body, if the optimizer is smart enough. It

always affects function call boundaries, though. Example of a function call boundary:
https://godbolt.org/g/6EEE8H.

The fundamental issue is that abi_for_size only depends on the element type and the size.
Since it is only used by concat() and split(), we propose to drop abi_for_size and
abi_for_size_t, and let the implementation pick the returned ABI(s) for concat() and split().

Besides the performance benefits, rebind_abi_t also allows static_simd_cast, simd_cast,
to_compatible, to_native to extend naturally.

Proposed Change

template <class T, size_t N, typename... As>
struct abt—fer—stzerebind abi { using type = implementation-defined; };

template <class T, size_t N, typename... As>
using abt—fer—stze—trebind abi_t =
typename abt—fer—stzerebind abi<T, N, As...>::type;

template <size_t... Sizes, class T, class A>
tuple<simd<T, abt—fer—sitze—trebind abi_ t<T, Sizes, A>>>...>
split(const simd<T, A>&);

https://godbolt.org/g/6EEE8H

template <size t... Sizes, class T, class A>
tuple<simd_mask<T, abi—for—stze—trebind abi_ t<T, Sizes, A>>...>
split(const simd_mask<T, A>&);

Returns: A tuple of simd/simd_mask objects with the i-th simd/simd_mask element of the j-th
tuple element initialized to the value of the element in x with index i+ partial sum of the first j
values in the Sizes pack.

template <class T, class... As>

simd<T, abi—fer—stze—trebind abi_ t<T, (simd_size_v<T, As> + ...), As...>>
concat(const simd<T, As>&...);

template <class T, class... As>

simd_mask<T, abt—fer—stze—trebind abi_ t<T, (simd_size v<T, As> + ...), As...>>
concat(const simd_mask<T, As>&...);

template <class T, class U, class Abi> see below simd_cast(const simd<U, Abi>& x);

Remarks: The function shall not participate in overload resolution unless
e every possible value of type U can be represented with type To, and
e either is_simd_v<T>is false, or T::size() == simd<U, Abi>::size() is true.

If is_ smd _v<T>is true, the return type is T. Otherwrse 1t—U—rs—T—the—Feturﬁ—ty=pe—|s—s—1-ﬁd<:r—Ab1—>

3 -

type is simd<To, rebind abi t<To, 51md<U Ab1> :size(), Abis>.

’

template <class T, class U, class Abi> see below static_simd_cast(const simd& x);

Remarks: The function shall not participate in overload resolution unless either is_simd_v<T> is
false or T::size() == simd<U, Abi>: sue() is true. If is_ smd _v<T>is true the return type isT.
Otherwise, if-ei j H

Abt>sstze>>the return type is simd<To, rebind_abi_ t<To, simd<U, Abis>::size(), Abis>>.

concat() doesn't support std::array

We propose it for being consistent with split(). Users may take the array from split(), do some
operations, and concat back the array. It'd be hard for them to use the existing variadic
parameter concat().

Proposed Change

template <class T, class Abi, size t N>

simd<T, rebind_abi_t<T, N, Abi>> concat(const std::array<simd<T, Abi>, N>&):

template <class T, class Abi, size t N>

simd mask<T, rebind_abi_t<T, N, Abi>> concat(

const std::array<simd mask<T, Abi>, N>&);

Returns: A simd/simd_mask object, the i-th element of which is initialized by the input element,
indexed by 1 / simd_size v<T, Abi> as the array index,and 1 % simd_size v<T, Abi> as the
simd/simd_mask array element index. The returned type contains (simd size v<T, Abi> * N)
number of elements.

split() is sometimes verbose to use

It is sometimes verbose and not intuitive to use the array version of split(), e.g.

template <typename T, typename Abi>

voild Foo(simd<T, Abi> a) {
auto arr = split<simd<T, fixed_size<a.size() / 4>>>(3);
// auto arr = split_by<4>(a) is much better.
[* . */

}

and it's even more verbose for non-fixed_size types. We propose to add split_by() that splits
the input by an 'n" parameter.

Proposed Change

template <size t n, class T, class A>

array<simd<T, rebind abi t<T, simd size v<T, A> / n, A>>, n> split by(

const simd<T, A>& x):

template <size t n, class T, class A>

array<simd mask<T, rebind abi t<T, simd size v<T, A> / n, A>>, n> split by(

const simd mask<T, A>& x):

Remarks: The calls to the functions are ill-formed unless simd _size v<T, A> is a multiple of n.

Returns: An array of simd/simd mask objects with the i-th simd/simd mask element of the j-th
array element initialized to the value of the element in x with index i + j *(simd size v<T, A>/n).

Each element in the returned array has size simd size v<T, A>::size() / n elements.

simd_abi::scalar and fixed_size<N> are not an aliases

One possible implementation of ABI is to create a centralized ABI struct, and specialize around
it:

enum class StoragePolicy { kXmm, kYmm, /* ... */ };
template <StoragePolicy policy, size_t N> struct Abi {};

template <typename T> using native = Abi<kYmm, 32 / sizeof(T)>;
template <typename T> using compatible = Abi<kXmm, 16 / sizeof(T)>;

Then every operation is implemented and specialized around the centralized struct Abi.

Unlike native and compatible, scalar and fixed_size is not an alias. Currently they require
extra specializations other than the ones on struct Abfi.

Proposed Change

struetusing scalar = /* implementation defined */;

Remark: scalar shall not introduce a non-deduced context.

template <int N> struetusing fixed_size {F= /* implementation defined */;

Remark: fixed size shall not introduce a non-deduced context.

Reference

e The original paper: P0214R7
e Experimental implementation: https://github.com/google/dimsum

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0214r7.pdf
https://github.com/google/dimsum

