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Precise Semantics for Assertions

Lisa Lippincott

Abstract

I’ve seen a number of discussions of assertions devolve into confusion over the precise semantics of
assertions. Some of this confusion seems to stem from the competing needs of different areas of software
development, and some seems to stem from a more philosophical question: “How can an incorrect program
have the defined behavior needed to report its incorrectness?”

Here, I first propose functional definitions of assertion and assertion failure without reference to any
particular syntax. Second, I enumerate some of the needs an assertion mechanism should serve. Finally,
I develop a precise proposal for the behavior of assertions, constructed as C++ code built from primitives
based directly in the parameterized nondeterministic abstract machine of 4.6 [intro.execution].1

One unexpectedly deep aspect of this proposal is to explicitly allow certain parameters of the abstract
machine — certain implementation-defined behaviors — to vary between translation units. This variation
is discussed in section 3.

In this paper, I intend to develop a semantics for assertions, paying particular attention cases where an
assertion may have side effects, exit with an exception, have undefined behavior, or otherwise interfere with
the observable behavior of the abstract machine. To promote completeness and precision, I am grounding
the work in three foundations: a functional definition of assertion; a list of needs that should be balanced by
an assertion mechanism; and the fundamental operations of the C++ abstract machine. Such an approach
is, of course, somewhat lengthy; please bear with me.

To begin, I propose the following functional definition of assertion:

An assertion is an experiment we propose, that, if enacted, distinguishes incorrect behavior in a
surrounding context, while leaving correct behavior of the surrounding context unaltered.

I like this formulation because we can reverse it to see how a correct assertion must behave: a correct
assertion, even if enacted, does not interrupt the control flow or alter the data of the surrounding context.2

It follows that a correct assertion may be freely ignored in execution, or that it may be repeated any number
of times. Much of the remainder of this paper involves delimiting the situations in which an implementation
may eliminate or repeat an assertion.

This definition also helps us define failure of an assertion. By taking “distinguishes” to mean a distinction
in value or execution path, we see that, if a successful boolean assertion must produce the value true, an
assertion may fail not only by producing false, but also by hanging, terminating, exiting with an exception,
or otherwise not completing. Not all of these failures will be diagnosable, but they are nonetheless failures.

1 A variety of needs

An assertion is a multi-purpose tool. It may be used to delineate correct behavior; express a test condition;
diagnose incorrect behavior; prevent continuation of a failing program; open an avenue for optimization;
mark a point of agreement between functions; or simply document a step in a programmer’s reasoning. And
when it’s doing none of those things, it should add no weight to the program.

1References to the C++ standard are based on the April 2017 draft N4659 [3].
2I deliberately avoid the formulation “has no side effects” here, because it would be actively harmful to prevent assertions

from calling functions that might log diagnostic messages or temporarily use previously-uninitialized memory.
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A single assertion may be used in many of these roles during the life of a program. And different programs
— or different parts of the same program — may call for different roles. With so many roles to play, it’s
not surprising that there are conflicting needs governing the behavior of assertions. I’ve managed to identify
some of these needs:

Reliable diagnosis In some contexts, failures of assertions must be reliably reported. This is especially
important in testing and debugging, so that absence of failure can be concluded from absence of
reported failure. To meet this need, incorrect programs (programs with failing assertions) must have
defined behavior.

Reliable interruption of control flow The code immediately following an assertion often has undesirable
or undefined behavior if the assertion has failed. To prevent the undesirable or undefined behavior, a
failing assertion must prevent execution from continuing to the next statement. Preventing undefined
behavior in this way also makes diagnosis more reliable. Again, to meet this need, incorrect programs
must have defined behavior.

Conservative introduction In some contexts, it is important that introduction of assertions into a pro-
gram not alter the existing behavior of the program. Testing the assertion, diagnosing a failure, or
altering the control flow each could be an unacceptable change, so this need is in conflict with the
needs for reliable diagnosis and reliable interruption of control flow.

Speedy execution If an assertion interrupts the control flow of a program, code following the assertion
can sometimes be optimized based on the knowledge that the assertion has succeeded. But when we
have confidence that the assertion will succeed, we can make a further optimization by eliminating
the test. To enable this optimization, a program that would fail an assertion must have undefined
behavior. Therefore, the need for speedy execution conflicts with the needs for reliable diagnosis,
reliable interruption of control flow, and conservative introduction.

Small executable size Some programs must be shrunk to the smallest size possible. In these programs,
the size of the assertion diagnosis information may not be negligible. Also, as with the need for
speedy execution, some code size optimization opportunities only appear when tests are optimized
away. Therefore, the need for small executable size conflicts with the needs for reliable diagnosis,
reliable interruption of control flow, and conservative introduction.

Source obscurity Some programs and libraries are distributed in a stripped binary form in order to obscure
the details of their operation. This need largely aligns with the need for small executable size.

Aloofness When we reason about the behavior of our programs, we treat assertions as experiments we
may perform to distinguish correct from incorrect behavior. Reasoning about these experiments is
easier when the experiments stand aloof from the program, leaving correct programs unaffected by the
presence or testing of the assertion. Likewise, it is undesirable for a program, correct or not, to be able
to simulate or alter diagnostic reports of assertion failure. This need largely aligns with the needs for
reliable diagnosis and conservative introduction, but can conflict with the needs for speedy execution
or small executable size, when the effect of optimizations can be observed within the program.

Coordinated diagnosis of failure One motivation for introducing a new assertion mechanism is that
cerr is not seen as a universally acceptable way to report failure. This leaves a need for a failure
reporting mechanism that independently-developed libraries can agree upon.

Intolerance of exceptions Some programs, like it or not, globally cannot tolerate exceptions. This intol-
erance constrains the ways in which reliable interruption of control flow can be achieved.

Intolerance of termination Some programs must globally avoid termination, and instead attempt to
recover from all faults internally. This intolerance also constrains the ways in which reliable interruption
of control flow can be achieved, to the point where reliable interruption of control flow, intolerance of
exceptions, and intolerance of termination are in conflict.
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While the conflicts between these needs can’t be resolved, we can give the user the ability to choose a
balance between these needs. The final three needs are program-wide, and a single choice must govern an
entire executable program (though a different choice might govern a separate executable program built from
the same source). The other needs are local, and choices may be made more locally, limited to a translation
unit or a user-specified category of assertions.

2 Assertion categories

The contracts proposal [2] recognizes a need to separate assertions into levels, where each level corresponds
to an assessment of the risks of testing an assertion or leaving it untested. The cost of testing an assertion,
the likelihood of the assertion failing, and the cost of failure going undetected may all factor into the choice
of assertion level.

Here, I will take that work as granted, and incorporate the assertion level into a wider scheme of assertion
categories. The assertion category is the smallest unit of independent control of assertion behavior. I find
no technical need for assertion categories to be ordered, but partially or totally ordering the categories may
simplify the user experience.

I will leave the exact definition of the assertion categories to future (and past) discussion, but here suggest
that an assertion’s category might further vary based on whether it is a precondition or postcondition, or
whether (as in [1]) it is claimed (expected to succeed for local reasons; existentially quantified) or posited
(expected to succeed for non-local reasons; universally quantified).

The important point for this paper is that assertions of different categories may be controlled indepen-
dently, but that the category of an assertion is governed by the one definition rule. In particular, if an
assertion appears in an inline function, all translation units must agree on the category of the assertion, even
if they assign different treatments to that category.

3 Parameters of the abstract machine

Because the needs listed in section 1 conflict with each other, we expect each user of the implementation to
resolve the conflicts by making choices that emphasize the user’s particular needs. Formally, these choices
are bound to parameters of the abstract machine (4.6 [intro.execution] ¶2). While such parameters formally
result in implementation-defined behavior, it is expected that implementations will define a mechanism that
exposes these parameters to user control (say, by relating them to compiler switches).

The behavior of assertions is described below in terms of five interdependent boolean parameters:

assertion_testing_specified,
assertions_tested,
assertions_assumed,
assertions_reported, and
assertions_prevent_continuation.

Collectively, I refer to these parameters as the treatment of an assertion. In the interest of aloofness, these
parameters should not be made directly inspectable by a program.

The expectation that these parameters will be set at compile time presents a problem: few users control
the compilation of every translation unit in their programs — some libraries, particularly those provided by
the operating system, will be compiled by others. To avoid letting library authors dictate the treatment of
assertions, we must allow the treatment to vary between translation units.

This variation in the parameters of the abstract machine creates a further problem: assertions in inline
functions and in function interfaces may appear in more than one translation unit. I propose that in this case,
the choice of governing translation unit be left unspecified, but uniform within a single function execution
or static initialization. This requires a subtle, and perhaps belated, definition:

A translation unit dependent parameter of the abstract machine may be defined by the imple-
mentation to have different values associated with different translation units. In general, when
implementation-defined behavior depends on such a parameter, the value of that parameter is
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drawn from an unspecified translation unit. However, within a single execution span of a func-
tion or nonlocal variable, all translation unit dependent parameters must be drawn from a single
translation unit defining the function or variable.

An execution span of a function f is a single execution of f , exclusive of functions called by f ,
but inclusive of the evaluation of default parameters of such functions. Likewise, an execution
span of a nonlocal variable x is a single initialization of the variable, exclusive of functions
called (including the constructor), but inclusive of the evaluation of default parameters of such
functions.3

My intention is that these definitions do not introduce new behavior, but instead simply extend the
existing behavior of compiler options to options that control specific implementation-defined behaviors.

4 Handler functions

Common handler functions can address the program-wide needs listed in section 1: coordinated diagnosis
of failure; intolerance of exceptions; and intolerance of termination. While [2] introduces a single handler
function to implement these common aspects of assertion behavior, I find it convenient here to separate the
common aspects into three handler functions.

The assertion failure report handler is responsible for delivering diagnostic information about an as-
sertion failure to an appropriate output. A simple handler might compose a message based on the
handler’s parameters, and write the message to cerr.

The exception report handler is responsible for delivering diagnostic information about an exception to
an appropriate output. A simple handler might compose a message based on the handler’s parameters
and the exception being handled, and write the message to cerr.

The prevent continuation handler is responsible for interrupting the ordinary control flow of the pro-
gram. A simple handler might throw an exception or terminate the program. This handler must be a
noreturn function.

The need for aloofness suggests that the choice of handlers be made outside the program source (say,
as a parameter to a linker). Formally, this makes the handler implementation-defined, even though our
expectation is that the implementation will allow the user control over the choice of handlers. Further,
programs should be discouraged, if not prevented, from examining the choice of handlers, directly invoking
the handlers, or taking the address of any of the handlers.4

5 Primitive operations

To define the behavior of assertions precisely, I need a number of primitive operations that are not currently
supplied by the language. While I think each of these would be a useful addition to the language, the
purpose of this paper is not to propose that they be added at this time. Nevertheless, I’ve tried to use
wording suitable for standardization.

5.1 Library functions

These primitive operations can be implemented as library functions, though some will be better implemented
though compiler intrinsics.

3This definition leaves the invocation of the destructor of an exception object or nonlocal variable outside any execution
span. A stronger definition might include those invocations in the same span as the corresponding construction. This could
affect the behavior of preconditions and postconditions for destructors.

4One mechanism might be to provide a library function that, like main, users are forbidden to call, but which can be mapped
to a user-provided function using a linker option.
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5.1.1 unspecified

bool unspecified() noexcept

Result: An unspecified (4.6 [intro.execution] ¶3) boolean value. Subsequent invocations of unspecified
need not produce the same value. [Note: A program may invoke this function to allow nondeterminism in
the abstract machine. —end note]

5.1.2 undefined behavior

void undefined_behavior()

A program that invokes this function has undefined behavior (4.6 [intro.execution] ¶4). [Note: The
International Standard places no requirements on the behavior of such a program. A program may invoke
this function to release the implementation from the requirements of the International Standard. —end note]

5.1.3 prevent continuation

[[noreturn]] void prevent_continuation()

Invokes the prevent continuation handler. [Note: The program has undefined behavior if the prevent -
continuation handler returns. —end note]

5.2 Statements

These statements have behavior that depends on their grammatical context, and so cannot be described as
library functions.

5.2.1 report failure

report failure ;

Invokes the assertion failure report handler in a manner appropriate for an asserted expression that has
evaluated to false at the current location.

5.2.2 report exception

report exception ;

Invokes the exception report handler in a manner appropriate for an asserted expression whose evaluation
has exited at the current location with the currently handled exception (18.3 [except.handle] ¶8). If there is
no currently handled exception, this statement has undefined behavior.

6 Behavior of assertions

To separate the testing conditions from the response to assertion failure, I am here introducing unconditional
failure statements. While these statements might be a helpful addition to the language, I am describing them
here as a stepping stone toward full assertions.

5



6.1 Unconditional failure

fail unconditionally ;

A correct program does not execute this statement. The behavior of this statement is implementation-defined,
and governed by three parameters of the abstract machine: assertions_assumed, assertions_reported,
and assertions_prevent_continuation. These parameters may vary with the assertion category (ac) and
translation unit (tu). The effect of the statement is equivalent to:

if ( assertions_assumed(ac,tu) )

undefined_behavior();

if ( assertions_reported(ac,tu) )

report failure;

if ( assertions_prevent_continuation(ac,tu) )

prevent_continuation();

Here we see that assertions_assumed, when true, allows optimization based on the assumption that
this statement is never reached. This represents a choice of speedy execution and small executable size over
reliable diagnosis, reliable interruption of control flow, or conservative introduction.

Taking assertions_reported to be true represents a choice of reliable diagnosis over source obscurity,
small executable size, and conservative introduction. This is perhaps the least vital of the parameters, as
source obscurity is of little concern in many projects, and the penalty to executable size may be negligible
in larger projects. But I understand that in some projects the latter concerns cannot be ignored, and this
parameter allows programmers on such projects to avoid paying a cost for what they don’t need.

Finally, taking assertions_prevent_continuation to be true represents a choice of reliable diagnosis
and reliable interruption of control flow over conservative introduction. If control is allowed to continue to a
following statement that relies on the assertion, undefined behavior might result, preventing delivery of the
report of assertion failure.

The values of assertions_reported and assertions_prevent_continuation are made moot when
assertions_assumed is true. Therefore these three binary choices combine to give fail unconditionally

five possible behaviors, including one which has no effect other than to distinguish the execution path as
failing.

6.2 Failure with an exception

fail exceptionally ;

This statement is similar to fail unconditionally, but is used when the failure is due to an exception.
The effect of the statement is equivalent to:

if ( assertions_assumed(ac,tu) )

undefined_behavior();

if ( assertions_reported(ac,tu) )

report exception;

throw;

As with fail unconditionally, when when assertions_assumed is true, the value of assertions_-

reported is made moot. The parameter assertions_prevent_continuation never affects this statement,
as the exception itself prevents continuation to the next statement.5 Continuation to the next statement is
always prevented by fail exceptionally.

5An alternate formulation has assertions_prevent_continuation govern invocation of yet another handler, before the
exception is rethrown. This adds complexity without, in my estimation, addressing any of the needs identified in section 1.
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6.3 Boolean assertions

A boolean assertion has the behavior of the following code, where the word “expression” is replaced by
the asserted expression. The relevant parameters of the abstract machine are represented as functions of the
assertion category ac and the translation unit tu.

if ( assertion_testing_specified(ac,tu)

? assertions_tested(ac,tu)

: unspecified() )

{

bool failed = true;

try

{

if ( expression )

failed = false;

}

catch ( ... )

{

fail exceptionally;

// fail exceptionally always prevents continuation

}

if ( failed )

fail unconditionally;

}

Note that when assertion_testing_specified is false, the value of assertions_tested is made moot.
Therefore there are three choices for testing: testing unspecified, specified tested, and specified untested. In
the specified untested case, the parameters governing response to failure are also made moot.

Here we see that leaving testing unspecified allows the widest latitude when optimizing for speedy ex-
ecution. It allows an implementation to insert a test — even a test that may throw or have side effects
— in order to separate the assertion success path (presumably a hot path) from the assertion failure path
(presumably a cold path). Of course, when testing is left unspecified, reliable diagnosis, reliable interruption
of control flow, and conservative introduction are compromised.

When assertions are specified to be tested, reliable diagnosis and reliable interruption of control flow are
chosen over speedy execution, small executable size, or conservative introduction.

Finally, when assertions are specified to be untested, conservative introduction is prioritized over all
other concerns, leaving the assertion with no effect on the defined and specified behavior of the program.
An implementation may, of course, allow the assertion to affect its unspecified behavior, say, by assuming
the assertion indicates a condition likely to be true.

6.4 Void assertions

Assertions of type void are a feature of [1] but not [2]. They are intended to express requirements that cannot
or should not be logically negated with the “!” operator. They are useful for expressing requirements that
are asymmetric with respect to logical negation, such as:

• a requirement such as reachable (relating forward iterators) that is recursively enumerable, but not
recursive;

• a requirement such as in_the_past (relating a time to a monotonic clock) which is stable, but whose
negation is ephemeral;

• a requirement such as deallocatable (relating a block of memory to an allocator) whose negation
should not be a precondition to any operation; or
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• a requirement such as writable (for a byte of memory) which, for the sake of efficiency, may be
implemented in a weakened or even vacuous form. (A boolean condition cannot be weakened without
strengthening its negation.)

The behavior of a void assertion is identical to that of a boolean assertion that cannot return false:

if ( assertion_testing_specified(ac,tu)

? assertions_tested(ac,tu)

: unspecified() )

{

try

{

expression;

}

catch ( ... )

{

fail exceptionally;

}

}

The behavior of the assertion parameters in a void assertion mirrors the behavior described above for a
boolean assertion.

7 Choosing values for the assertion parameters

The five assertion parameters combine to provide eleven possible behaviors for an assertion. Of the eleven,
three align with common practice:

To prioritize conservative introduction, set assertion_testing_specified to true, but assertions_-
tested to false. This leaves the specified, defined behavior of a program unchanged by the introduc-
tion of assertions.

To prioritize reliable diagnosis, set assertion_testing_specified, assertions_tested, assertions_-
reported, and assertions_prevent_continuation to true, and assertions_assumed to false.
This specifies that assertions should be tested and failures reported, and avoids the undefined behavior
that may result from continuing on from a failed assertion.

To prioritize speedy execution, set assertion_testing_specified to false and assertions_assumed

to true. This promotes unspecified and undefined behavior, leaving the greatest scope for optimiza-
tion. In particular, this combination allows an implementation to formally test the assertion only in the
case the assertion will have undefined behavior, exit with an exception, or produce false. Since such
a test leads inevitably to undefined behavior, it need never actually be performed, but the remaining
program may be optimized on the assumption that the test would have defined behavior and succeed.

Three other combinations strike balances favoring multiple concerns:

To balance small code size with reliable interruption of control flow, set assertion_testing_specified
to true, assertions_tested to true, assertions_assumed to false, assertions_reported to
false, and assertions_prevent_continuation to true. This combination also provides source ob-
scurity.

To balance reliable diagnosis with conservative introduction, set assertion_testing_specified to
true, assertions_tested to true, assertions_assumed to false, assertions_reported to true,
and assertions_prevent_continuation to false. This allows assertions to be tested and failures to
be reported, but does not otherwise affect control flow. Reliable diagnosis is compromised by allowing
execution to continue to statements that may rely upon the correctness of the assertion.

8



To balance speedy execution with conservative introduction, set assertion_testing_specified to
false, assertions_assumed to false, and assertions_prevent_continuation to true. This com-
bination gives an implementation the option of testing the assertion in order to optimize later code
based on the assertion’s success, but does not directly introduce undefined behavior.

The remaining combinations in which testing is left unspecified but success is not assumed allow some
opportunistic failure reporting or optimization without introducing undefined behavior. The remaining
combinations in which testing is required may be useful in isolating the side effects of the test expressions.

8 Function interfaces

Preconditions and postconditions6 occupy an awkward space a calling function and the function it calls, which
may be in different translation units. This leaves us with a problem: when the assertion parameters differ
between the calling and called execution spans, which parameters govern preconditions and postconditions?
Or, more concretely, are preconditions and postconditions evaluated as part of the caller or part of the called
function?

Every combination of choices has advantages:

• Evaluation as part of the called function centralizes the testing code, leading to smaller code size.

• Evaluation of preconditions in the called function but postconditions in the caller allows each span to
verify the conditions it relies upon. A library that chooses assertions_prevent_continuation can
avoid dangerous behavior using this combination.

• Evaluation of preconditions in the caller and postconditions in the called function places each test in
the translation unit where it can most easily be optimized away.

• Evaluation of both preconditions and postconditions in the caller allows a user of a library to insist
on testing the interface to the library, even if the library was compiled with no assertion testing. This
allows a user to distinguish their own bugs from bugs in the library.

I propose that we split this baby by formally evaluating preconditions and postconditions twice, in both
the calling and called execution spans. Specifically, preconditions are to be evaluated first as part of the
calling execution span, then as part of the called span; postconditions are to be executed in the called span
first.

This proposal, of course, can lead to an unfortunate duplication of assertions. This does not affect
the local behavior of a correct program — recall that correct assertions may be repeated any number of
times — but can lead to needlessly slow execution or (when assertions_prevent_continuation is false)
duplication of diagnostic messages. I suggest two ways to mitigate this duplication:

First, the assertion categories of preconditions and postconditions in the calling span should be separate
from the assertion categories in the called span. That way, a large portion of a project may adopt a uniform
policy of testing in the calling or called function, but not both.

Second, when the assertion treatments of the calling and called spans agree, we can allow the duplicate
tests to be removed as an optimization. This optimization will, of course, be easiest to apply to calls within
a single translation unit.

9 In conclusion

This proposed behavior for assertions is baroque: five translation unit dependent implementation-defined
parameters combining to make eleven combinations of implementation-defined, unspecified, and undefined
behavior. But I’ve come to see this complexity as a consequence of the variety of needs listed in section 1.

6In relation to [1], I use “precondition” to mean an assertion in a function prologue, and “postcondition” to mean an assertion
in an epilogue. Function interfaces in [1] also allow non-assertion statements. For example, a variable may be declared in a
prologue and used in the epilogue. A separate implementation parameter may allow the entire interface to go unexecuted, but
that is beyond the scope of this paper.
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Each operation supports one or more of those needs, and each parameter balances some needs against others.
I think it will be difficult to simplify the behavior without disregarding one or more of those needs.

In broad outlines, this treatment of assertions agrees with both [1] and [2]. But I can identify a number
of lessons here:

• There is a need for a centralized message reporting mechanism, whose use appears to extend beyond
reporting assertion failures.

• Likewise, there is a need for a centralized continuation prevention mechanism, whose use appears to
extend beyond escaping from assertion failures.

• Separating the concerns for assertion diagnosis and for preventing continuation in the face of failure
provides a flexibility particularly important in contexts that require a small executable size.

• Allowing some assertions to prevent continuation while allowing others to continue after failure pro-
motes use in contexts that require conservative introduction.

• Allowing the treatment of assertions to vary between translation units is useful, but requires some
careful wording around implementation-defined behavior.

• We don’t have good words for describing behavior that is formally implementation-defined, but with
the expectation of user control.

• When the treatment of assertions varies between uncoordinated translation units, either the calling or
the called translation unit should be able to require reliable diagnosis of a function interface.

• Library functions explicitly calling for unspecified and undefined behavior are useful in describing the
behavior of higher-level language constructs. They may also be useful in code, as they explicitly provide
flexibility to the implementation.

While complex, this design does have a pleasing utility: it can vary from a robust diagnostic tool to
a zero-cost statement, and potentially to a negative-cost optimization opportunity. The complexity comes
from trying to please many constituencies. We may wish to adopt less complex semantics, but I think we
should be aware of the constituencies harmed by simplification.
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