
Doc.	No:	 P0589R0	
Date:		 2017-02-04	
Group:		 EWG	
Contact:	 Andrew	Sutton	<asutton@uakron.edu>	

	

	

Tuple-based	for	loops	
Introduction	
This	paper	proposes	 to	enable	 the	 iteration	of	 tuple-members	using	 the	 syntax	of	 the	 range-
based	 for	 loop.	 The	 goal	 is	 to	 make	 it	 easier	 for	 programmers	 to	 write	 algorithms	 for	
heterogeneous	containers.	

Current	practice	requires	the	use	of	a	for-each	algorithm	and	a	generic	function	object	or	generic	
lambda	to	define	behaviors.	Here	is	a	simple	using	the	Hana	library:	

auto tup = std::make_tuple(0, ‘a’, 3.14);
hana::for_each(tup, [&](auto elem) {
 std::cout << elem << std::endl;
});

The	for_each	function	applies	the	generic	lambda	to	print	each	element	of	the	tuple	in	turn.	
Using	this	proposal,	that	code	could	be	written	like	this:	

auto tup = std::make_tuple(0, ‘a’, 3.14);
for (auto elem : tup)
 std::cout << member << std::endl;

The	output	of	the	program	is	the	same.	However,	the	familiar	syntax	makes	the	algorithm	much	
easier	to	understand	and	easier	to	write.	Furthermore,	it	avoids	the	need	for	lambda	capture,	
allowing	local	variables	to	be	used	directly.	

One	 of	 the	major	motivations	 for	 proposing	 this	 extension	 is	 related	 to	 the	 static	 reflection	
proposal	P0590r0.	Reflecting	e.g.,	the	members	of	a	class	yields	a	tuple-like	object	that	can	then	
be	used	as	the	range	of	a	for	loop.	For	example,	we	could	print	the	member	names	of	some	class	
S	like	this:	

for (auto member : $S.members())
 std::cout << member.name() << std::endl;

The	meaning	of	the	algorithm	should	be	obvious.	

Semantics	
Tuple-based	for	loops	are	not	actually	loops;	the	body	of	the	loop	is	instantiated	once	for	each	
element	in	the	tuple.	Consider	the	following	loop.	

auto tup = std::make_tuple(0, ‘a’, 3.14);
for (auto elem : tup)
 std::cout << member << std::endl;

This	is	equivalent	to:	

	

	

{
 auto&& __tuple = tup;
 {
 auto elem = std::get<0>(__tuple);
 std::cout << member << std::endl;
 }
 {
 auto elem = std::get<1>(__tuple);
 std::cout << member << std::endl;
 }
 {
 auto elem = std::get<2>(__tuple);
 std::cout << member << std::endl;
 }
}

The	 semantics	 of	 the	 extension	 are	 relatively	 straightforward.	 The	meaning	 of	 the	for	 loop	
depends	on	the	type	of	the	for-range-initializer	T.	If	T	is	non-dependent,	then:	

• If	T	satisfies	the	Range	concept,	the	loop	is	a	range-based	for	loop.		
• If	T	satisfies	the	Tuple	concept,	then	the	loop	is	a	tuple-based	for	loop.		
• Otherwise,	the	program	is	ill-formed.	

By	“satisfies	the	concept”,	I	mean	that	lookup	is	used	to	construct	certain	valid	expressions.	The	
Range	concept	is	satisfied	when	the	begin-expr	and	end-expr	can	be	formed	using	the	existing	
rules	for	the	range-based	for	loop.	

The	Tuple	concept	is	satisfied	when	T	has	class	type	and	the	following	invented	declaration	is	
well-formed:	

constexpr std::size_t N = std::tuple_size<T>::value

Note	that	the	concept	does	not	check	for	a get	function	since	that	requires	a	concrete	template	
argument	and	even	0	may	cause	the	program	to	be	ill-formed	(i.e.,	when	N == 0).	Some	tuple-
like	 implementations	may	disable	out-of-bounds	get	 functions	 for	overload	 resolution	 rather	
than	statically	asserting	the	condition.	

When	T	is	a	Tuple,	the	loop	range-based	for	statement	is	initially	equivalent	to:	

{
 auto&& __tuple = for-range-initializer;
 loop-body	
}

where	loop-body	is	the	compound-statement:	

{
 for-range-declaration = get-expr;
 statement	
}

	

	

The	 loop-body	 is	 parameterized	 by	 an	 invented	 non-type	 template	 parameter	 with	 type	
std::size_t.	The	expression	get-expr	 is	get<I>(__tuple)	where	get	 is	 looked	up	 in	the	
associated	namespace	of	__tuple.	Ordinary	unqualified	lookup	is	not	performed.	If	the	lookup	
of	get	yields	no	candidates,	the	program	is	ill-formed.	

The	loop-body	is	instantiated	for	each	integer	value	K	in	the	range	[0,	N)	by	substituting	K	for	I.	
If	 any	 substitution	 in	 the	 loop-body	 fails,	 the	 program	 is	 ill-formed.	 The	 range-based	 for	
statement	is	finally	equivalent	to	the	sequence	of	instantiated	loop-bodys.	

The	break	and	continue	statements	have	slightly	different	meaning	within	a	tuple-based	for	
loop.	The	break	statement	passes	control	to	the	statement	following	the	last	instantiated	loop-
body,	 if	any.	The	continue	statement	passes	control	to	the	next	instantiated	 loop-body,	 if	any.	
For	example,	this	loop	

for (int x : tup) {
 if (x == 0) continue;
 if (x == 1) break;
}

is	equivalent	to	this	sequence	of	statements:	

{
 auto&& __tuple = ...;
 {
 __loop_0:
 if (x == 0) goto loop_1;
 if (x == 1) goto loop_end;
 }
 {
 __loop_1:
 if (x == 0) goto loop_2;
 if (x == 1) goto loop_end;
 }
 // ...
 {
 __loop_N:
 if (x == 0) goto loop_end;
 if (x == 1) goto loop_end;
 }
 loop_end:
}

Observations	and	notes	
Preserves	the	meaning	of	existing	code	
This	proposed	feature	does	not	change	the	meaning	of	existing	code.	Range-based	for	 loops	
continue	 to	be	 range-based	 (i.e.,	not	 tuple-based)	because	 the	Range	 concept	check	 is	given	
precedence	in	the	semantics	of	the	loop.		

	

	

Extra	header	files	
This	feature	does	not	require	users	to	include	headers—sort	of.	If	a	programmer	wants	to	iterate	
over	a	std::tuple,	then	they	will	have	already	included	the	header	in	order	to	construct	the	
tuple	object.		

Furthermore,	 defining	 a	 model	 of	 the	 Tuple	 concept	 requires	 a	 partial	 specialization	 of	
std::tuple_size,	 so	all	 implementations	would	either	have	 included	the	<tuple>	header	
already	 or	 provide	 a	 forward	 declaration.	 As	 before,	 iterating	 over	 a	 tuple-like	 object	would	
require	the	user	to	have	previously	include	the	appropriate	header.		

Lookup	on	std::tuple_size	is	only	performed	when	the	range	type	is	non-dependent,	which	
means	that	generic	algorithms	can	use	the	syntax	without	including	any	additional	headers.		

Unrolling	array	loops	
Range-based	for	 loops	over	arrays	continue	to	iterate	in	the	usual	way.	However,	this	facility	
can	be	used	to	explicitly	unroll	loops.	If	an	array	could	be	“converted”	to	a	tuple,	loops	over	that	
container	 would	 instantiate	 the	 body	 once	 for	 element.	 This	 can	 be	 done	 using	 an	unroll	
facility.	

int a[] { 0, 1, 2, 3 };
for (int& n : unroll(a))
 n *= 2;

This	loop	is	equivalent	to:	

int a[] { 0, 1, 2 };
{
 auto&& __tuple = unroll(a);
 {
 int& n = get<0>(__tuple);
 n *= 2;
 }
 {
 int& n = get<1>(__tuple);
 n *= 2;
 }
 {
 int& n = get<2>(__tuple);
 n *= 2;
 }
}

Although	most	compilers	would	probably	be	able	to	unroll	such	a	simple	loop	automatically,	it	
may	not	be	possible	with	more	complex	control	structures.	

The	unroll	function	can	be	defined	like	this:	

template<typename T, int N>
auto unroll(T(&arr)[N]) {
 return homogenous_tuple<T, N>(arr);

	

	

}

The	homogeneous_tuple	class	is	essentially	std::array,	but	satisfying	the	Tuple	concept	
and	not	the	Range	concept.	This	could	also	be	extended	to	work	for	any	Range	with	compile-
time	size.	

A	similar	technique	could	be	used	to	unroll	compile-time	integer	sequences.	

Enumerating	loop	bodies	
It	may	be	useful	to	access	the	instantiation	count	in	the	loop	body.	This	could	be	achieved	by	
using	an	enumerate	facility:	

for (auto x : enumerate(some_tuple)) {
 // x has a count and value
 std::cout << x.count << “: “ << x.value << ‘\n’;

 // the count is also a compile-time constant
 using T = decltype(x);
 std::array<int, T::count> a;
}

The	enumerate	function	returns	a	simple	tuple	adaptor	whose	elements	are	count/value	pairs.	
This	facility	should	be	relatively	easy	to	implement.	

Interaction	with	concepts	
Concepts	can	be	used	in	the	declaration	of	the	loop	variable	to	provide	deduction	guarantees	for	
tuple	elements:	

for (Number& n : some_tuple)
 n *= 2;

If	 deduction	 of	 the	 loop	 variable	 fails	 during	 instantiation,	 the	 program	would	 be	 ill-formed,	
presumably	with	a	reasonably	good-looking	error	message.	

Interaction	with	constexpr-if	
Loop	bodies	can	include	conditionally	compiled	branches	further	simplifying	algorithms	creation	
for	heterogeneous	containers.	This	would	work	particularly	well	with	concepts.	

for (auto& x : some_tuple) {
 using T = decltype(x);
 if constexpr (Number<T>) // do number stuff
 if constexpr (String<T>) // do string stuff
}

This	can	also	be	used	with	return	type	deduction	to	define	algorithms	whose	result	types	depend	
on	one	or	more	elements	of	the	tuple.		

The	tuple-based	for	loop	does	not	directly	support	the	computation	of	types	based	on	the	values	
of	elements	in	a	tuple.	Algorithms	that	aim	to	compute	projections	or	transformations	on	the	
types	and	values	of	heterogeneous	containers	(i.e.,	tuples)	cannot	be	implemented	using	a	tuple-
based	for	loop	and	constexpr if.	

	

	

It	should	be	possible	to	use	the	tuple-based	for	loop	to	compute	types,	except	that	C++	does	not	
provide	direct	support	for	type	variables.	Such	a	feature	could	be	used	to	compute		

typename R = tuple<>
for (auto& x : some_tuple) {
 using T = decltype(x);
 if constexpr (is_integral_v<T>)
 R = append_t<R, T>;
}

After	instantiation,	the	type	R	would	be	a	tuple	comprised	of	the	integral	types	of	some_tuple.	

Type	 variables	 are	way	 beyond	 the	 scope	 of	 this	 proposal	 (but	 potentially	 a	 very	 interesting	
direction	to	explore).	

Interaction	with	initializer	lists	and	parameter	packs	
The	feature	could	be	extended	to	allow	more	brace-init-lists	in	the	for-range-initializer.	Currently,	
the	elements	of	such	a	list	are	required	to	have	the	same	type	because	the	deduction	produces	
a	std::initializer_list.	

It	might	be	worthwhile	to	define	the	semantics	of	a	for-loop	over	a	brace-init-list	to	use	a	tuple-
based	expansion.	That	is,	this	loop	

for (auto x : {0, 3.14, ‘a’})
 std::cout << x;

would	be	equivalent	to	

for (auto x : make_tuple(0, 3.14, ‘a’))
 std::cout << x;

This	change	to	the	semantics	would	also	allow	this:	

template<typename... Args>
void f(const Args&... args) {
 for (auto x : {args...})
 std::cout << x;
}

The	 function	 parameter	 pack	would	 expand	within	 the	brace-init-list	 and	 the	 loop	would	 be	
instantiated	 once	 for	 each	 element.	 Alternatively,	 we	 may	 consider	 supporting	 expansions	
directly	in	the	for-range-initializer.	

template<typename... Args>
void f(const Args&... args) {
 for (auto x : args...)
 std::cout << x;
}

This	should	be	equivalent	to	the	previous	version	of	the	function.	

	

	

Implementation	experience	
Yes.	 Work	 is	 ongoing.	 At	 the	 time	 of	 writing,	 the	 foundations	 of	 the	 feature	 have	 been	
implemented	(tuple	lookup	and	loop	body	instantiation).	

Acknowledgements
Thanks	 to	 Louis	 Dionne	 for	 comments	 on	 an	 early	 draft	 and	 pointing	 that	 I	 had	 completely	
overlooked	the	meaning	of	break	and	continue	statements	in	tuple-based	for	loops.	

