

Document number P0587R0

Date 2017-02-05

Authors Richard Smith <​richard@metafoo.co.uk​>
James Dennett <​jdennett@google.com​>

Audience Evolution

Concepts TS revisited

Introduction
The Concepts TS has proven to be an invaluable resource for exploring the design space of
predicate-style concepts in C++. We believe we have enough information now to know that

● Many of its ideas work well in the context of C++ — for instance, modeling concepts as
type predicates, partial ordering for constrained templates through a concept refinement
relationship, and allowing a constrained template to depend on constructs that are not
described by its constraints;

● Some parts need syntactic and in some cases semantic adjustment to mesh well with
the C++ language and existing implementations; and

● Other parts should be left behind.

This paper attempts to identify these areas.

Concept definition
“​concept bool ​” is redundant: all concepts are boolean. Reusing an existing construct such as
a function or variable template is an expedient way to simplify the specification for a TS, but for
standard C++, concepts are sufficiently central that they should be first-class.

Modeling concepts as functions and variables leads to many unnecessary problems; some
highlights:

● The choice of function versus variable is an implementation detail, but unavoidably leaks
out of the interface (the syntax for a concept check is different in the two cases:
Concept<X> ​ vs ​Concept<X>() ​).

● Function and variable templates are instantiated on use and produce distinct entities;
concepts must be introspected, decomposed, and substituted into the point of use to
support partial ordering.

mailto:richard@metafoo.co.uk
mailto:jdennett@google.com

● Modeling concepts as functions permits nonsense such as taking the address of a
concept.

Concept overloading creates cognitive ambiguity — is ​EqualityComparable<T> ​ “types that
are equality comparable with T” or “a check that T is equality comparable with itself”? The
answer is ​both​, in different contexts.

Proposed changes
=> Add first-class concept definition syntax, remove ​concept bool
=> (Optional) do not allow concept overloading

Before
template<typename T>
concept bool X = Concept1<T> &&
 Concept2<T>();

After
template<typename T>
concept X = Concept1<T> &&
 Concept2<T>;

or
concept<typename T> X = //…

or even
concept X<typename T> = //…

Constraint decomposition
The Concepts TS decomposes constraints into atomic constraints, even inside
requires-expression​ s. This promotes textual duplication, introduces fragility and coupling
between implementation details, and does not serve a useful purpose.

Example:
template<typename T> void f()
 requires requires { g(declval<T&>()); ++declval<T&>(); } // #1
template<typename T> void f()
 requires requires { g(declval<T&>()); } // #2
#1 is more specialized than #2, through brittle textual duplication. If #1 is refactored as
template<typename T> void f()
 requires requires(T &t) { g(t); ++t; }
… then it is no longer considered more specialized. We think it would be better if #1 and #2 are
simply unordered, and for partial ordering to be determined by semantic concept requirements
rather than arbitrary textual duplication.

The useful feature provided by constraint decomposition is the ability to specify that the
constraints on one template are a refinement of those on another. “​&& ​” constraints allow a
concept to specify that it refines some existing concept; in practice, “​|| ​” constraints are used to

specify the reverse: that some existing concept or constraint is a refinement of the new concept
or constraint.

Proposed changes
=> Remove full decomposition and ordering based on textual duplication; only order concepts
=> Concepts explicitly specify which concepts they refine and which they are refinements of

A new syntax is provided to retroactively annotate that an existing concept is a refinement of a
newly-introduced concept, in order to preserve the ability to write the common cases of ​||
constraints. Such added constraints are not checked during satisfaction checks for the original
concept, and only affect partial ordering. The program is ill-formed if they introduce a cycle into
the concept refinement graph.

Before
template<typename T>
concept bool X = Concept1<T> &&
 Concept2<T>();
template<typename T>
concept bool Y = X<T> &&
 sizeof(T) == 4 &&
 requires (T t) { ++t; };

// Integral and Floating are
// provided by some library.
template<typename T>
concept bool Primitive =
 Integral<T> || Floating<T>;

After
template<typename T>
concept X : Concept1<T>,
 Concept2<T>;
template<typename T>
concept Y : X<T> requires (T t)
{
 requires sizeof(T) == 4;
 ++t;
};

template<typename T>
concept Primitive
 requires { /*...*/ };

// Declare that Integral and
// Floating are refinements of
// Primitive.
template<typename T>
extern concept Integral<T>
 : Primitive<T>;
template<typename T>
extern concept Floating<T>
 : Primitive<T>;

Requires clauses
The boolean expression syntax is confusing as not all boolean operators are taken into account,
and it adds novel implementation requirements for determining equivalence, with a worst-case
exponential time subsumption algorithm.

Permitting arbitrary expressions within ​requires-clause​ s places unreasonable requirements on
implementations, requiring complex constraints to be mangled into template signatures (for
implementations relying on name mangling). The resulting “​requires requires ​” syntax is
confusing and embarrassing.

Proposed changes
=> Requires clause specifies list of required concepts, not arbitrary boolean expression.
=> Requirements of a template cannot contain arbitrary expressions, just ​named ​ concepts.

Combined with the proposed removal of constraint decomposition, there is now a simple,
reasonably efficient test for partial ordering: each template simply has a set of associated
concepts, and one template is at least as specialized than another if each of the other
template’s concepts is the same as, or transitively refined by, at least one of the first template’s
concepts.

Before
template<typename T>
void f() requires requires
 { x(T()); } {}

template<typename T>
void g() requires A<T> && B<T>;

After
template<typename T>
concept Xable requires
 { x(T()); };

template<typename T>
void f() requires Xable<T> {}

or, as in Concepts TS v1,
template<Xable T> void f() {}

template<typename T>
void g() requires A<T>, B<T>;

Summary of proposed concept definition syntax
While the above list is presented as a set of piecemeal changes, there is a big picture design
here. The key idea is to model a concept definition after a type definition, rather than after a
function or variable definition. C++ has a semi-uniform pattern for such cases, which we
propose to follow:

keyword name : refined-type-1, refined-type-2 { body };
class Foo : public Bar { int n; /*...*/ };
enum E : int { a, b, c };
concept Foo : Bar<T>, Baz<T> requires (T t) { t++; };

The specific proposed syntax for a ​concept-declaration​ is:

concept ​ ​identifier​ ​: ​ ​concept-id-list​ opt​ ​requires-expression​ opt​ ​;

where the ​requires ​ keyword may be omitted from the ​requires-expression​ when the
parameter-declaration-clause​ is omitted. It should be noted that this implies a little extra syntax
compared to a Concepts TS variable concept for the case where a concept is defined as a
boolean expression:

template<typename T> concept IsSmall {
 requires sizeof(T) <= 8;
};

… and a little less syntax for concepts that are defined primarily as validity requirements on their
type parameter, which we expect to be the common case. (And increasingly so as more code
transitions from wrapping type traits in concepts to expressing type predicates as concepts
directly.)

Requires expressions
The Concepts TS’s ​requires-expression​ s are, at their heart, a first-class way to perform
expression/statement/type validity (“SFINAE”) checks. However, the syntax chosen to express
these checks is unnecessarily inventive, providing neither a familiar way to express the desired
syntactic constructs nor a system that trivially allows production of an archetype for constrained
template definition checking. (Note, we’re not claiming that such checks are impossible, rather
that the necessary constraints would need to be carefully inferred from the set of valid
constructs.)

requires-expressions​ are also quite limited: they do not model all of C++. While there is a syntax
to specify an implicit conversion constraint, there is no syntax to check the validity of other forms
of variable declaration and initialization. (Example: copy-list-initialization -- that is, the
initialization form ​T x = {a,b}; ​ -- is not straightforward to model in a ​requires-expression​ .)

Additionally, the same syntax in a convertability requirement in a ​compound-requirement​ means
different things depending on whether the right-hand side contains a placeholder:
template<typename T> concept bool C = // ...
template<typename T> concept bool X =
 requires (int x) {
 {f(x)} -> T*; // f(x) can be implicitly converted to type T*
 {f(x)} -> C*; // type of f(x) is pointer to type satisfying C
 };

Proposed changes
=> Replace syntax with ​‘requires ​ ​parameter-declaration-clause​ ​compound-statement​ ’

- can use any syntax permitted in a function or lambda body

- result is ​true ​ if substitution into body succeeds, ​false ​ if not
- extend and reuse existing language syntax, do not invent a new mini language

=> For syntactic convenience, add ​nested-requirement​ form as regular declaration
- requires x; ​ is equivalent to ​static_assert(x); ​ but more natural 1

Before
template<typename T>
void f() {
 bool b = requires (T t) {
 {x(t)} -> int;
 // require that range-based
 // ‘for’ will work on ‘t’
 requires requires
 (decltype(begin(t)) b,
 decltype(end(t)) e) {
 b != e;
 ++b;
 *b;
 };
 };

 static_assert(Concept<T>);
}

After
template<typename T>
void f() {
 bool b = requires (T t) {
 int n = x(t);
 for (auto v : t) {}
 };
 requires Concept<T>;
}

Terse template notations
The Concepts TS introduces too many syntaxes for a function template declaration. Some of
those syntaxes have no clear, consistent syntactic marker for templates, which is important
semantic information for the reader of the code (remembering that code is read vastly more than
it is written). Consider:

void f(Something x) { foo(x); }
Is this declaring a function template? That has deep implications for its comprehension,
refactoring, and use. With the Concepts TS, we cannot tell unless we look up the definition of
Something ​ and determine whether it is in fact a concept name.
The above form also significantly harms any sound and consistent notion of what a
concept-name​ represents, and harms the consistency of the language. Consider:

// A is a value of type int.
// typename is notionally the kind (type-of-a-type) of types,
so
// B is a value of type typename.

1 If we wish to fully solve the issue of ​concept-name​ s being usable at different levels of the sort hierarchy,
we could further restrict the use of ​Concept<T>​ as a boolean value to only being permitted in a
requires-clause / nested-requirement​ . However, the practical benefits of permitting this usage in an ​if
constexpr​ statement may be sufficient to discourage this.

// Regular is the kind of regular types, so
// C is a value of type Regular.
template<int A, typename B, Regular C>
// a is a value of type int.
// b is ill-formed because values of type typename are types.
// c is unjustifiably valid, and ontologically wrong.
void f(int a, typename b, Regular c);

This form must be revised. Accepting a type concept as a function parameter is every bit as
wrong as accepting “typename b” as a function parameter.

Conversely, given:

template<int N> concept bool Even = N % 2 == 0;
This seems quite reasonable (if perhaps not all that useful):

template<Even N> void f() {
constexpr Even X = N;

}
Note that in this case, values of type ​Even ​ are ontologically at the “value” level not at the “type”
level because it is a concept constraining a value (non-type template parameter), not a concept
constraining a type.

Consider also the ​template-introduction​ syntax:

Concept{A, B, C}
void f(A a, B b, C c);

Assuming ​Concept ​ is not overloaded and takes three type parameters, this is shorthand for
template<typename A, typename B, typename C>
void f(A a, B b, C c) requires Concept<A, B, C>;

Note that this syntax is extremely limited: if the template has ​any​ other template parameters, it
cannot be used (allowing multiple such lists introduces ambiguity into the language). It’s also
extremely and unnecessarily inventive; the language constructs it most closely resembles mean
something wholly different (they would be uses of A, B, and C, not declarations!).

Proposed changes
=> Replace template-introduction syntax with a syntax based on decomposition declarations
that permits additional template parameters to be declared

Replace
 Concept{A, B, C} void f(A, B, C) {}
with
 template<Concept [A, B, C]> void f(A, B, C) {}
(or similar). Note that this generalizes to multiple parameters:
 template<Concept [A, B, C], typename T, Concept2 [D, E]>

=> Require an explicit sigil to declare a function to be a template

Replace
 void f(auto a) {}
 template<typename T> void g(auto a) {}
with
 template<...> void f(auto a) {}
 template<typename T, ...> void g(auto a) {}

The ​... ​ sigil in the ​template-parameter-list​ indicates that additional template parameters will be
inferred from the declaration.

=> Remove or revise terse template notation

Remove
 void f(ConceptName) {}
… but perhaps add something like
 template<...> void f(ConceptName auto a) {}
 template<...> void f(ConceptName T a, T b) {}
… where the latter declares ​T ​ to be a type template parameter of type ​ConceptName ​, and ​a
and ​b ​ to be of type ​T ​.

Keep
 template<ConceptName X> void f(X a) {}

Summary of proposed template definition syntax
The guiding design ideas leading to the above proposed syntax are:

● A common, uniform syntax for template definitions, where every template definition
begins with the syntactic marker ​template<

● Reuse of existing C++ syntax for declarations introducing multiple template parameters
(structured binding syntax)

● Each concept-id declares only values, or only types, or only kinds, and the choice is not
context-dependent.

Constrained template redeclaration
The Concepts TS tries to define the various concept syntaxes as essentially syntactic
desugarings of a more fundamental syntax, allowing redeclarations of the same template to use
different syntaxes. This approach is poorly-conceived and highly underspecified (see various
threads on the core reflector about whether and where parentheses are inserted, the order in
which components of the requires-clause are emitted, the precise syntax that forms desugar

into), and does not fit into the C++ template model, which uses a token-stream equivalence
model for all other such checks throughout the language. For example:

template<C T, C U, C V> void f();
template<typename T, typename U, typename V>
 void f() requires (C<T> && C<U>) && C<V>;
template<typename T, typename U, typename V>
 void f() requires C<T> && (C<U> && C<V>);

Does the first ​f ​ declare the same function as the second or the third? Neither? Both? This
approach should be revisited. There is simply no reason to allow different syntactic forms to be
used in different declarations of the same template.

Proposed changes
Remove the special case. Require that the same syntax must be used in constrained function
template redeclarations, as is the case in C++ today.

Acknowledgements
Most of the issues and ideas here are not our own. They are primarily drawn from two sources:

● A discussion of the assembled members of the BSI national body at Jacksonville, and
● An informal meeting of committee members interested in revisiting and updating the

Concepts TS at Oulu.
While this paper was written at the request of the assembled members of the BSI national body,
it does not necessarily represent the official position of BSI nor of those committee members
attending the Oulu meeting.

We want to thank everyone involved in those discussions, along with hallway conversations and
the like during prior committee meetings, and hope that this paper will be a starting point for the
refinements that we think are necessary in order to make Concepts an elegant and consistent
part of C++20.

