Default == is >, default <is < so

Document number: PO354R0

Date: 2016-05-15

Audience: EWG

Reply-to: Tony Van Eerd. order at forecode.com

tl:dr:

Contrary to P0221R1, we should not generate operator<() by default.

Motivation/Explanation

class chair { ... };

We can all easily imagine what is in class chair. It probably tells you the colour, size, shape, material,
number of legs, etc,... of the chair.

chairl == chair2

What does chairl == chair2 mean?

It is unsurprising to want to compare two chairs and determine that they are, for salient properties,
equal. Default memberwise equality works fine. In fact, when | learned C circa 1987, | tried to
compare two structs for equality, and was saddened that it didn't work. | think that default
generation of == (and =), a la P0221R1, is great, and for most classes both obvious and useful.

chairl == chair2

Now, what does chairl < chair2 mean?

What does it mean to ask "is this chair /ess than that chair?" ? Is the chair smaller? Shorter? Lighter?
Less legs? | think this question has little to no meaning. Less red? (imagine that the first member of
chair is colour in RGB format.)

operator< () ON chair iS meaningless.

| understand an ordering might be useful, in particular when used with std: :map (but maybe you
should use unordered map?), etc. But | don't appreciate meaningless APl being added to all my
classes. (Why not add a calculate volume function that doesn't calculate the volume of the chair,
or acalculate pi () function, which doesn't calculate pi?) Why not memberwise operator+ and
divide by scalar? At least then | could maybe calculate the average chair, which makes more sense
than the /east chair.

Ordering can be useful, but it shouldn't be tied to less. "Representative ordering" and "less" are
different concepts, and each has their uses. They should not be conflated - at least not by default.

How bad is it?

If operator< () is generated by default, | will recommend, as a coding guideline, that the average
class opt-out of this default generation. My default will be to disable the default. I'll go as far as
allowing, maybe even recommending, a MACRO for this purpose. /t's that bad.

Ways Out

1. Just don'tit. Don't generate operator<().

2. Make default generation of operator<() optin. This has been discussed in the past. I'm not
against it. I'd still like == to be default-in, opt-out. Because == almost always makes sense, <
almost always doesn't.

3. Generate a specialization of std: : order instead (which would then be used by std: :map et al).
std: :map should never have defaulted to std: : 1ess but rather it should have defaulted to some
std: :order (Which could defer to std: : less if/when std: :order wasn't specialized). See
Alisdair's PO181RO0 for further work (on the library side) in a similar direction.

4. A new operator - the ordering operator. | know no one likes new syntax except the one
proposing it, but... For now, to avoid bikeshedding, imagine it is operator<e (see footnotes). The
new operator could be generated by default - without ambiguity of meaning, and used by
std: :map et al (for now, it could be called by std: : 1ess if/when < is invalid, and/or called by
std: :order and have map use that, etc).

The difference between 3 and 4 is just whether the /anguage should generate /ibrary specializations,
or whether it should stick to language-level syntax.

| recommend 1 followed by 3 or 4. ie for C++17, just don't generate operator<() and then introduce
a new operator post C++17. These are better than option 2 (opt-in) because order /s worthwhile,
even when "less" doesn't make sense - it is a separate concept, and should be kept separate.

Conclusion(s)
1. Most importantly, please don't generate operate< () by default. It is just wrong.
2. Please take some other path towards default ordering - one of the paths suggested above, or

some other path, just not default generated operator<().

The rest of this paper discusses why separation of "less" and "representative order" is important,
and why generating representative order some other way than operator<() would be worthwhile,
but the main point of the paper has already been made: we should not generate operator<() by
default.

The rest of this paper is probably post-C++17 discussion.
Other uses

| think "less" and "representative order" are fundamentally different, and if we had both as

independent concepts, we would find many natural uses. The first use | found, years ago, was an
immutable string class. (Adobe, for example, had at least 2 classes like this.) FOr immutable string,
all instances that are equal (by string equality) can share the same storage for the string. (Like
copy-on-write, but you never write!) The storage address becomes the implementation of ==.
Address is also useful for implementing < when used in std: :map (if/when lookup is more
important than order). But you still want < to be string-based less, for other uses, ie for display in a
Ul. Separating "order" from "less", and std: :order from std: : less and operator<> from operator<
solves these issues.

| think there are many other uses, waiting to be found. The problem is common enough that many
well-respected C++ leaders (eg Sean Parent, Alex Stepanov,...) have a stock recommendation:
implement std: : 1ess but not operator< in cases where you want order, but < is meaningless. It is a
common/real issue.

Take back std::less

Implementing std: :less but not operator< is a viable work-around, but it is a hack. The point of
std::less was for it to be the function-object form of operator<; exploiting the use of std::1ess as
an extension point for std: :map et al perverts the meaning of std: :less. If std::1less was meant to
be an extension point, it probably should have been named differently, and have been specific to
containers - ie std: :order, for example. (Note also that these specializations of std: :1ess may be
prohibited by the standard - 17.6.4.2.1 "only if the declaration depends on a user-defined type and
the specialization meets the standard library requirements for the original template" - what are the
requirements of std::less? - itis defined to return "x <y", so if returning x <y is a requirement....)

By separating "less" from "representation order"”, we can keep std: : less as having the single
meaning of "calls x < y". I would in fact go further, and deprecate allowing users to specialization
std::less. It should only have one meaning.

Conclusion(s) again

1. Most importantly, please don't generate operate< () by default. It is just wrong.
2. Please take some other path towards default ordering - one of the paths suggested above, or
some other path, just not default generated operator<().

Footnotes

- Itis tempting to suggest that the new ordering operator should be "less-dot" ie <. because adding
a dot seem to be in vogue, but in this case <. would just lead to ambiguities like .1 < .0, as would
.<and .<. :-)

- »<works (but <* doesn't-iep < *q VS p<*q).

- <> works (even though that means !=in some languages). It can be read to mean "some order,
not necessarily greater or less, but some order™"

- l would NOT recommend any of the addition operators that could be made from <e such as <e=
etc.

