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Abstract

We discuss the addition to the standard library of class templates to ease the manipulation
of bits in C++. This includes a bit_value class emulating a single bit, a bit_reference em-
ulating a reference to a bit, a bit_pointer emulating a pointer to a bit, and a bit_iterator
to iterate on bits. These tools would provide a solid foundation of algorithms operating on
bits and would facilitate the use of unsigned integers as bit containers.
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1 Introduction

This proposal introduces a class template std::bit_reference that is designed to emulate a ref-
erence to a bit. It is inspired by the existing nested classes of the standard library: std::bitset::
reference and std::vector<bool>::reference, but this new class is made available to C++
developers as a basic tool to construct their own bit containers and algorithms. It is supple-
mented by a std::bit_value class to deal with non-referenced and temporary bit values. To
provide a complete and consistent set of tools, we also introduce a std::bit_pointer in order
to emulate the behaviour of a pointer to a bit. Based upon these class templates, we design a
std::bit_iterator that provides a foundation of bit manipulation algorithms. We discuss the
API that is required to access the underlying representation of bits in order to make these algo-
rithms faster. Although they will be given as illustrating examples, bit algorithms would need a
separate proposal and are thus considered as out of the scope of this proposal that focuses on the
fundamental tools.

2 Motivation

In The C++ Programming Language [Stroustrup, 2013], Bjarne Stroustrup highlights the fact that
“unsigned integer types are ideal for uses that treat storage as a bit array.” One of the most
basic functionality that an array generally provides is a convenient way to access its elements.
However, the C++ standard library is currently missing a tool to access single bits in a stan-
dardized way. Such tools already exist, but they are buried as internal helper classes with pri-
vate constructors and thus they are kept away from C++ developers. Speci�c examples include
std::bitset::reference, std::vector<bool>::reference and boost::dynamic_bitset
::reference [Siek et al., 2015]. If unsigned integral types should be seen as bit containers, it
would be convenient to have a standard utility to access and operate on single bits as if they were
array elements.

In addition to this basic motivation, applications that could leverage bit utilities include,
among others, performance oriented software development for portable devices, servers, data
centers and supercomputers. Making the most of these architectures often involves low-level
optimizations and cache-e�cient data structures [Carruth, 2014]. In fact, these aspects are go-
ing to become more and more critical in a post-Moore era where energy e�ciency is a primary
concern. In that context, being able to act directly on bits, for example to design e�cient data
structures based on hash tables, is of primary importance. Moreover, the spread of arbitrary-
precision integral arithmetic both at the hardware level [Ozturk et al., 2012] and at the software
level, as proposed in N4038 [Becker, 2014], will require, once again, tools to e�ciently access
single bits.

For all of these reasons, and to prevent bit references to be repeatedly implemented, we pro-
pose to add a std::bit_reference class template to the C++ standard library. As a response to
feedback gathered through the future proposal platform, we have complemented this class tem-
plate with a std:: bit_value, a std::bit_pointer and a std::bit_iterator in order to have
a complete set of bit utilities, and to serve as the basis of a future standardized library of bit algo-
rithms based on an alternative and more generic approach than N3864 [Fioravante, 2014].
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Performance of standard algorithms specialized for bit iterators
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Figure 1: Bit algorithms performances.

With bit iterators, some standard algorithms could bene�t from substantial optimizations. For
example, a specialization of std::count on std::bit_iterator should be able to call, when
available, the assembly instruction popcnt on the underlying unsigned integers of the bit se-
quence. std::sort could also call popcnt to count the number of zeroes and ones, and then di-
rectly change the value of unsigned integers accordingly. In fact, most standard algorithms, such
as std::copy, should be able to operate directly on integers instead of individual bits. These
types of approaches have already been explored in libc++ for std::vector<bool> with sig-
ni�cant performance improvements [Hinnant, 2012]. Specialized bit algorithms could also be
provided. As an example, a parallel_bit_deposit algorithm could be far more e�cient than
a std::copy_if by calling the assembly function pdep on integers. Figure 1 summarizes bench-
mark results comparing the performance of standard algorithms called on std::vector<bool>
and their bit iterator counterpart implementing the design described in this proposal. As shown,
most algorithms can bene�t from speedups of more than two orders of magnitude. A library of
bit utilities as described here would allow users to write their own e�cient bit algorithms using
similar strategies: such utilities would provide a unifying generic zero-overhead abstraction to
access CPU intrinsics such as instructions from Bit Manipulation Instruction sets or from the
bit-band and bit manipulation engines on ARM-Cortex architectures [Yangtao, 2013].

3 Impact on the standard

This proposal is a pure library extension. It does not require changes to any standard classes or
functions, and introduces a new header for bit utilities whose name is discussed in part 4. Section 7
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discusses the nested classes std::bitset::reference and std::vector<bool>::reference.

4 Design decisions

Introduction

We propose a <bit> header providing a class std::bit_value and three class templates pa-
rameterized by a type: a std::bit_reference, with a design inspired by the existing nested bit
reference classes [ISO, 2014], a std::bit_pointer and a std::bit_iterator. The following
subsections explore the design parameter space. Even if a lot of attention is given to the de-
sign decisions concerning bit values and bit references, the original motivation of this proposal
remains std::bit_iterator which provides an entry point for generic bit manipulation algo-
rithms. std::bit_value, std::bit_reference, std::bit_pointer are additional classes an-
swering the question: what should std::bit_iterator::value_type, std::bit_iterator::
reference and std::bit_iterator::pointer be?

Background

A clear de�nition of what a bit is, how it is related to bytes and to fundamental types, and what
its behaviour should be like are prerequisites of well designed bit utility classes. The need of
raising the question of the de�nition of a bit can be illustrated by the following problem, where 0
and 1 indicate the bit value obtained at the end of the line, and where X refers to non-compiling
lines:

1 struct field {unsigned int b : 1;};
2
3 bool b0 = false; b0 = ∼b0; b0 = ∼b0; // 1
4 auto x0 = std::bitset <1 >{}[0]; x0 = ∼x0; x0 = ∼x0; // 0
5 auto f0 = field {}; f0.b = ∼f0.b; f0.b = ∼f0.b; // 0
6
7 bool b1 = false; b1 = ∼∼b1; // 0
8 auto x1 = std::bitset <1 >{}[0]; x1 = ∼∼x1; // 1
9 auto f1 = field {}; f1.b = ∼∼f1.b; // 0

10
11 bool b2 = false; b2 += 1; b2 += 1; // 1
12 auto x2 = std::bitset <1 >{}[0]; x2 += 1; x2 += 1; // X
13 auto f2 = field {}; f2.b += 1; f2.b += 1; // 0
14
15 bool b3 = false; b2 = b3 + 1; b3 = b3 + 1; // 1
16 auto x3 = std::bitset <1 >{}[0]; x3 = x3 + 1; x3 = x3 + 1; // 1
17 auto f3 = field {}; f3.b = f3.b + 1; f3.b = f3.b + 1; // 0
18
19 bool b4 = false; b4 += 3; // 1
20 auto x4 = std::bitset <1 >{}[0]; x4 += 3; // X
21 auto f4 = field {}; f4.b += 3; // 1

As shown in this example, three existing C++ bit-like entities exhibit three di�erent behaviours.
Given that std::bit_value and std::bit_reference will de�ne an arithmetic behaviour for
a bit, it is important to think carefully about what this behaviour should be. Also, before dis-
cussing in more details the chosen design and its alternatives, we summarize what the existing
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C++ integral types summary

signed integer types unsigned integer types

integral (or integer) types 

standard unsigned integer typesstandard signed integer types

extended signed integer types extended unsigned integer types

char
char16_t
char32_t
wchar_t
bool

unsigned char 
unsigned short int 
unsigned int 
unsigned long int 
unsigned long long int

Implementation defined

signed char 
short int 
int 
long int 
long long int

Implementation defined

standard integer types

extended integer types

1

T1 T2
Narrow character types, same amount of storage with sizeof(T) == 1 byte , same alignment require-
ments, same object representation, and same integer conversion rank. 

T2T1
Corresponding signed/unsigned integer types, same amount of storage sizeof(T1) == sizeof(T2), 
same alignment requirements, same object representation, and same integer conversion rank. 

T1
T2

sizeof(T2) is greater than or equal to sizeof(T1).

T1
T2

The integer conversion rank of T2 is greater than the integer conversion rank of T1.

unsigned/signed integer representation

 



N value 
bits

padding bits
(optional)

1 sign bit
(if signed)

unsigned 
integer

signed
integer

<cstdint>

Typedefs of standard 
integer types

•Narrow character types do not have padding bits. 
Each possible bit paern of unsigned narrow 
character types represents a distinct number. 

•The value representation of integral types uses a 
pure binary numeration system. Unsigned integers 
arithmetic is modulo 2N.
•The range of non-negative values of a signed 
integer type is a subrange of the corresponding 
unsigned integer type. Value representation of each 
corresponding signed/unsigned type is the same. 

•∀ unsigned char i∈⟦0, 255⟧, ∃ char j, 
static_cast<char>(i) == j &&
static_cast<decltype(i)>(j) == i .
•A prvalue of an integral type T1 is can be 
converted to a prvalue of another integer type T2. 
If T2 is unsigned, the resulting value is the least 
unsigned integer congruent to the source integer, 
modulo 2N. If  T2 is signed, the value is unchanged 
if it can be represented in T2; otherwise, the value 
is implementation defined.

✱

✱
bool values can be false or true, and they can be promoted to int values with false becoming 0
and true becoming 1.

•The object representation of integer types includes 
optional padding bits, one sign bit for signed types 
equals to zero for positive values, and N value bits 
given by std::numeric_limits::digits. 
The bit ordering is implementation defined.

Figure 2: Integral types.

standards have to say on bits and bytes, as well as on integral types, using the C++ working draft
N4567 [Smith, 2015] and the C working draft N1548 [Jones, 2011]. The purpose of the following
paragraphs is to provide condensed background information from the standards related to this
proposal before starting discussing the design decisions in the next subsection.

The C standard gives the following de�nition in its section 3.5: a bit is a unit of data storage in
the execution environment large enough to hold an object that may have one of two values. The
C++ standard de�nes a bit in [intro.memory] as an element of a contiguous sequence forming
a byte, a byte being the fundamental storage unit in the C++ memory model. According to this
model, the memory available to a C++ program consists of one or more sequences of contiguous
bytes. A byte is required to have a unique address and to be at least large enough to contain any
member of the basic execution character set and the eight-bit code units of the Unicode UTF-8
encoding form. An object is de�ned in [intro.object] as a region of storage. According to [in-
tro.memory] the address of an object is the address of the �rst byte it occupies, unless this object
is a bit-�eld or a base class subobject of zero size. The section [basic.types] de�nes two representa-
tions. The object representation of an object of type T is the sequence of N unsigned char objects
taken up by the object of type T. The number N is given by sizeof, where the sizeof operator
yields the number of bytes in the object representation of its operand according to [expr.sizeof].
In the C++ standard, [basic.types] states that for any object, other than a base-class subobject, of
trivially copyable type T, whether or not the object holds a valid value of type T, the underlying
bytes making up the object can be copied into an array of char or unsigned char. The rela-
tionship between bytes and characters is made clearer in [basic.fundamental] and [expr.sizeof],
as well as in the section 6.2.6.1 of the C standard which establishes a direct link between bytes
and unsigned char. The other representation de�ned by the C++ standard is the value repre-
sentation. It corresponds to the set of bits that hold the value of type T.
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C++ bitwise operators summary

Le shi 
lhs << rhs

Right shi 
lhs >> rhs

Bitwise AND
lhs & rhs

Bitwise XOR
lhs ^ rhs

Bitwise OR
lhs | rhs

Bitwise NOT
~rhs

rhs of integral or un-
scoped enum type TR

lhs of integral or un-
scoped enum type TL

Integral promotion to 
type PR

Integral promotion to 
type PL

Usual arithmetic 
conversion to type CLR

Usual arithmetic 
conversion to type CLR

rhs∈⟦0, n⟦
lhs has an unsigned 

type
lhs×2rhs (mod m +1)

 value in PL type
m: maximum value 
representable in PL

UPL: unsigned type 
corresponding to PL

n: length in bits of 
values of type PL

um: maximum value 
representable in UPL

Bitwise NOT on PR-
promoted rhs

Bitwise AND on CLR- 
converted operands 

Bitwise XOR on CLR- 
converted operands 

Bitwise OR on CLR- 
converted operands 

rhs∈⟦0, n⟦

Undefined behavior

Undefined behavior

lhs is unsigned or si-
gned and non-negative 

Implementation 
defined result

Integral part of 
lhs/2rhs in PL type 

Y

N

Y

N

lhs is signed and non-
negative 

Y

N N

Y

lhs×2rhs≤um

Undefined behavior

Y

N

Value of lhs×2rhs in 
UPL converted in PL

Y

N

Y

N

Operands, operators, and well defined results

Previous condition is true

Previous condition is false

Figure 3: Bitwise operators.

Regarding integers, [fundamental.types] de�nes �ve standard signed integer types, �ve stan-
dard unsigned integer types and additional extended integer types. Figure 2 summarizes the prop-
erties of the C++ integral types, their representation and their conversion rules according to
[fundamental.types] , [cstdint.syn], [numeric.limits.members], [conv.prom], [conv.integral] and
[conv.rank]. As stated in this �gure, the C++ standard require representation of integral types
to de�ne values by use of a pure binary numeration system. Such a system corresponds to a
positional representation of integers that uses the binary digits 0 and 1, in which the values rep-
resented by successive bits are additive, begin with 1, and are multiplied by successive integral
power of 2, except perhaps for the bit with the highest position [ISO, 2014]. Integral types come
with bitwise operators whose behaviour is presented on �gure 3 and that are of primary interest
regarding the topic of this proposal for the role they play in bit extraction. In top of integral
types, booleans, and character types, fundamental types also include �oating point types. A syn-
optic view of conversion rules involved in arithmetic operations for all these types is given on
�gure 4 for an implementation compliant with the C++ standard. In this �gure, the type of x
corresponds to rows while the type of y corresponds to columns. Each type is associated with
a color that is used to indicate the decayed result type of an operation involving x and y. As
an example, for x a long long int and for y an unsigned long int, the type of x + y is
unsigned long long int. An interesting property to note is that integral types smaller than
int are implicitly converted to int during arithmetic operations regardless of their signedness:
as an example, a bool, a char, an unsigned char and an unsigned short int exhibit similar
arithmetic behaviours for most operations.

In this context, two questions regarding the de�nition and the behaviour of a bit appear, and
are at the core of the design of the class templates we propose:

• How to de�ne the position of a bit within an object?
• What is the arithmetic de�nition of a bit?

The consequences of the �rst question include the types on which std::bit_reference and
std::bit_pointer will operate, and what bits will be accessible through iteration. The answer
to the second question will determine the implicit conversions and the results of arithmetic op-
erations on std::bit_value and std::bit_reference.
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Result type of arithmetic operations on C++ fundamental types
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Figure 4: Arithmetic operations on fundamental types.

How to de�ne the position of a bit within an object?

Bits are not directly addressable, but they are de�ned as binary elements of bytes which are the
most fundamental addressable entities of a given system and are required to be made of at least
8 bits. Consequently, identifying a bit requires a byte address and a position within a byte. The
problem is that the underlying ordering of bits within a byte is not speci�ed by the standard.
Therefore, according to the sole criterion of bits seen as elements of bytes, the mapping between
a position and an actual bit is implementation-de�ned.
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To make bit references, pointers, and iterators usable, the design needs to specify this map-
ping. As presented in the background subsection, the standard de�nes a clear connection be-
tween bytes and unsigned chars: an unsigned char have a size of exactly one byte, has no
padding or sign bits, each possible bit pattern represents a distinct number, and its value rely on
a pure binary numeration system. In other words, unsigned chars de�ne an unambiguous bit
mapping which corresponds to the de�nition of a bit seen as a binary digit of natural numbers.
According to this mapping, the n-th bit of an unsigned char uc is obtained by the operation
uc >> n & 1, when n ∈ J0, std::numeric_limits<unsigned char>::digitsJ. With this
de�nition, every bit can be referenced in an univocal manner with a pair of byte address and
position std::pair<unsigned char∗, std::size_t>.

Although it is very well de�ned, this method is very limited in the sense that it only gives ac-
cess to the object representation of types, and does not provide a direct implementation indepen-
dent way of accessing the n-th bit of the value representation of integral types. In fact, as the ob-
ject representation of integers other than the unsigned narrow character types is implementation-
de�ned, the method described above gives access to all bits of the integers, but in an order that
can depends on the architecture and on the compiler. Endianness and padding bits are, of course,
a part of the problem. De�ning a bit as the n-th binary digit of a natural number makes the design
more generic and more usable. According to this de�nition, for any unsigned integer ui of type
UIntType, we can obtain the n-th bit by the same formula we used for the unsigned char case:
ui >> n & 1 for n ∈ J0, std::numeric_limits<UIntType>::digitsJ. A design relying on
this approach presents several advantages: it de�nes unambiguously the position of a bit for
all unsigned integer types, it produces a platform-independent behaviour regardless of the un-
derlying representation of these integers, their endianness and the number of padding bits they
include, and it still provides an access to the object representation through a reinterpret_cast
to unsigned chars. Additionally, and more importantly, the de�nition of the position of a bit
matches its mathematical de�nition in a positional numeration system, making the use of the de-
sign intuitive.

At this point, the question of the generalization of this design arises. Should types other
than unsigned integer types be allowed? For a complete arbitrary type T, the only relevant bit
de�nition is the one based upon the object representation of T. The design proposed in the pre-
vious paragraph can already provides an easy access to the object representation of T through a
reinterpret_cast to unsigned char pointers. However, the question remains open for the fol-
lowing types: non-integral arithmetic types, bit containers, unbounded-precision integer types
as proposed in N4038 [Becker, 2014] and, of course, non-unsigned integral types. Concerning
�oating-point types, as their underlying representation is implementation-de�ned as speci�ed
in [basic.fundamental] and is left completely free by the standard, as this representation is not
relying on a pure positional numeration system but generally includes a sign, a mantissa and
an exponent, and as the shift operators does not apply to them, it does not make much sense
to treat them di�erently than any other arbitrary type T. For the three remaining cases, namely
bit containers, unbounded-precision integer types and non-unsigned integral types, the situa-
tion is di�erent since one can de�ne a bit position relying on the value representation of these
objects.

The question of referencing a bit in bit containers, like std::bitset and the specialization
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std::vector<bool>, and in unbounded-precision integer types is very similar. Even if not re-
quired, the vast majority of implementations of these objects rely on contiguous arrays of limbs of
unsigned integer types. For bit containers, the most natural de�nition of the bit position would
be the same as the one entering in the declaration of the subscript operator operator[]. For
unbounded-precision integers it can be trickier since they can be signed and include a sign bit.
But even if we ignore, for the moment, the issue of the sign bit, other design questions exist. For
example, it is unlikely that most unbounded-precision integers de�ne a subscript operator. In
this case, accessing a bit through the shift operator, as in the previous paragraphs, would make
more sense. This technique could also apply to std::bitset but not to std::vector<bool>
since the specialization does not provide an operator>>. Moreover if a maker helper function
such as make_bit_reference(T& object, std::size_t pos) was provided for bit contain-
ers and unbounded-precision integers, should the bit reference behaviour rely on the object, or
on its underlying representation in terms of limbs? Regarding to this question, it would make
more sense to rely on the object and its operator[] or operator>> regardless of the underly-
ing representation in the similar way a bit reference relying on unsigned integers would work
regardless of the optional presence padding bits. An internal access to the underlying container
of limbs could still be provided through member functions returning std::bit_references in-
stead of std::bit_references taking bit containers as parameters. It also opens the question
of whether or not std::bitset::reference and std::vector<bool>::reference should be
replaced by a std::bit_reference, or at least adjusted to provide the same interface. As al-
ready noted, for unbounded-precision or non-unsigned integer types, the question of the sign bit
and negative values also has to be solved. In fact, the mapping between the object representa-
tion of signed integers and their negative values is far less constrained than for unsigned integer
types. Consequently, a design relying on operator>> would lead to implementation-de�ned re-
sults. Whether we should, or not, accept such a design is left as an open question. As a remark,
the feedback gathered online from the C++ standard discussion board pointed out that bit ma-
nipulation on signed integers could be achieved with a design limited to unsigned integer types,
through a reinterpret_cast<typename std::make_unsigned<IntType>::type∗>.

In all the following, we restrain the design to unsigned integer types as de�ned on �gure 2.
We also de�ne the bit position such as the expression ui >> n & 1 is extracting the n-th binary
digit for n ∈ J0, std::numeric_limits<T>::digitsJ. This choice is motivated by the fact
that:

• the bit position matches the mathematical de�nition of a binary digit position in a positional
numeration system

• it leads to a platform-independent behaviour
• it provides an access to the underlying bits of any type through a reinterpret_cast to
unsigned char∗

• it provides an access to the bits of signed integer types through a reinterpret_cast to
typename std::make_unsigned<IntType>::type∗

• “unsigned integer types are ideal for uses that treat storage as a bit array” as highlighted
in section 2

• it matches the requirements of most use cases including cryptographic operations, hash
value calculations and computations on arrays of limbs
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• classes such as std::bitset already set a preference of conversions from and to unsigned
integer types over generic integer types

However, and as a �nal note, the proposed design could stay the same and still accept all
integral types, including future unbounded-precision integral types with minor modi�cations,
at the expense of implementation-de�ned results since its speci�cation is relying on the use of
bitwise operations to extract bits.

What is the arithmetic de�nition of a bit?

The second main question on which a signi�cant part of the design of a bit reference relies
concerns the arithmetic behaviour of a bit. As shown in the introductory listing of the back-
ground subsection, three bit-like objects already present in the standard exhibit three di�er-
ent behaviours. In this part, we discuss the di�erent options, their advantages and their draw-
backs.

The �rst option is the one followed by std::bitset::reference and std::vector<bool>
::reference. These classes are nested classes, mostly intended to take care of the result of
the subscript operator operator[] and implementing the behaviour of a boolean value from
the user’s point of view. As the goal of std::bit_value, std::bit_reference, std::bit_
pointer and std::bit_iterator will be slightly di�erent in the sense that they are specif-
ically intended to provide users with the ability of writing their own bit manipulation algo-
rithms, the choices made in terms of arithmetic can be di�erent from the the ones of the nested
classes, especially if it leads to a better interface for users. Many approaches tend to iden-
tify a bit with a boolean although the two are conceptually di�erent: the �rst one is a digit
whereas the second one is a logical data type. Both happen to have two possible values which
generally leads to representation of the �rst one in terms of the second one. The arithmetic
behaviour of std::bitset::reference and std::vector<bool>::reference mainly relies
on the implicit conversion to bool. As a consequence, all binary operators applicable to bool
also applies to std::bitset::reference through this implicit conversion. However, the ref-
erence does not exactly behave as a bool since it provides a flip member, it implements its
own operator∼, and it does not allow arithmetic assignment operations. In other words, if ref
is of type std::bitset::reference, ∼ref can lead to di�erent values than if it were a bool,
ref = ref + 3 gives the same result as if it were a bool, and ref += 3 does not compile. For a
nested class whose main role is to serve as proxy for the result of operator[], this very speci�c
behaviour may not be of primary concern. But for a std::bit_reference designed to provide
a generic way to deal with bit operations, an implicit conversion to bool and its implicit integral
promotion to int mixed with speci�cally designed operators such as operator∼ could be very
error-prone. Also, we investigate other alternatives to the original scenario which would consists
in reproducing the exact same behaviour as std::bitset::reference.

The �rst alternative is to consider that a bit, as a pure binary digit, is not an arithmetic
object and therefore should not implement any arithmetic behaviour. Instead, it would pro-
vide three member functions: set, reset and flip, these functions already being a part of the
implementation details of some bit references such as boost::dynamic_bitset::reference
[Siek et al., 2015]. Boolean conversions would be provided for arithmetic purpose through an
operator= and through an explicit operator bool. The explicitness of the operator would pre-
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vent any undesired conversion and integral promotion, and would make clearer the conceptual
di�erence between a binary digit and a boolean data type while still providing the desired casting
functionality. This would lead to a minimal but very consistent design.

The second alternative is to consider that a bit and a bool have the exact same behaviour. In
that case, the class would not provide special members like set, reset and flip and would stick
to the arithmetic operators executable on booleans. The binary arithmetic operators could be
provided either explicitly, or by an implicit cast to operator bool. operator∼ and arithmetic
assignment operators would be provided and would lead to the same results as for booleans. As
in the case of the �rst alternative, this strategy would avoid unexpected arithmetic behaviours
for users and would introduce an easily understandable interface.

The third alternative echoes the fact that the C++ standard identi�es bytes with an unsigned
integer type, namely unsigned chars. In the same manner, we can consider a bit as a binary
digit with an arithmetic behaviour equivalent to a hypothetical uint1_t, an unsigned integer
one-digit long that can be equal to either 0 × 20 = 0 or 1 × 20 = 1. For the binary digit side,
std::bit_reference would get the member functions set, reset and flip and an explicit
operator bool. For the arithmetic side, assignment operators and increment and decrement
operators would implement a modulo 21 = 2 arithmetic. Consequently, for a bit reference bit
initially equals to 0, bit += 3 would lead to a value of 1 and (++bit)++ would lead to a value
of 0. For binary arithmetic operators there are two options to consider: either implementing
the overloads explicitly, or making the operators work through an implicit cast to an unsigned
integral type. For this last option there are three possibilities: this type could be set to the small-
est unsigned integral type, namely unsigned char or uint_least8_t, or it could be set to the
type in which the bit is referenced, or it could be set through an additional template parame-
ter of std::bit_reference. However, adding a template parameter to specify the arithmetic
behaviour of a bit would made the bit classes more complex for no real bene�t.

To summarize, the main possibilities in terms of the arithmetic behaviour of a bit are the
following:

• the design of the nested classes std::bitset::reference and std::vector<bool>::
reference, with a mix of behaviours, possibly error-prone

• the �rst alternative, consisting in considering a bit as a pure binary digit therefore stripped
of an arithmetic behaviour, although still accessible through an explicit conversion to a
bool

• the second alternative, consisting in considering a bit as a boolean an therefore providing
the exact same functionalities as a bool

• the third alternative, consisting in considering the �rst alternative with additional arith-
metic properties corresponding to a one-digit long unsigned integer

Earliest drafts of this proposal were limited to these four options and the chosen design was
based on the �rst alternative to keep the technical speci�cations as simple as possible. However,
this simplicity was coming with a minor open problem. Considering that std::bit_iterator::
reference is a std::bit_reference, and that std::bit_iterator::pointer is a std::bit_
pointer, then what should std::bit_iterator::value be? De�ning it as a bool or as an
unsigned char would not provide the arithmetic behaviour of a one-digit long unsigned in-
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teger, while de�ning it as a std::bit_reference could lead to errors, since a reference and
a value are two di�erent things. Moreover, if std::bit_reference implements a one-digit
long unsigned integer arithmetic, then what should be returned by the post�x increment and
decrement operators? For consistency it has to return a type with the same functionalities as
std::bit_reference, including set, reset and flip functions, but it cannot be a referenced
bit: it has to be an independent bit.

This is where the idea of std::bit_value comes into play, solving these problems, allow-
ing a consistent arithmetic behaviour implementation, and simplifying the design of the class
template std::bit_reference. The role of std::bit_value is to mimic the value of inde-
pendent, non-referenced bits. As a class representing independent bits implicitly constructible
from bit references, it has to provide the arithmetic behaviour of a one-digit long unsigned inte-
ger. But the question of how to implement these arithmetic operators in a lightweight manner
still remains. The answer can be found by analyzing the content of �gure 4. The important
thing to notice is that, for most operations, bool, unsigned char and unsigned short int
act in the same way: they are implicitly casted to int, and so should a one-digit long un-
signed integer. Fitting std::bit_value with an implicit operator bool would enable this
behaviour. However, making std::bit_value implicitly constructible from bool would not
result in a one-digit long unsigned integer arithmetic, but making it implicitly constructible from
unsigned char would do it. This strategy leads to a conversion and optionally a narrowing of
any integer type to unsigned char, whose least signi�cant bit could then be extracted to set the
actual value of std::bit_value. In addition to these implicit conversions, std::bit_value and
std::bit_referencewould have to implement the arithmetic operators that mutate their states
such as compound assignment operators and both increment and decrement operators.

This approach, namely:
• the fourth alternative, consisting in considering the third alternative implemented with an

additional std::bit_value class
is the one that is followed in this proposal because of the solution it provides to the above-
mentioned problems.

What design?

Based on the answers to the fundamental questions of the position of a bit and of its arithmetic be-
haviour, we can design a library solution to access bits. Accordingly to the previous subsections,
this design is built around four elements:

• std::bit_value emulating an independent, non-referenced bit
• std::bit_reference emulating a reference to a bit
• std::bit_pointer emulating a pointer to a bit
• std::bit_iterator, based on the preceding classes and emulating an iterator on bits
std::bit_reference and std::bit_pointer are parameterized by a template type indi-

cating the underlying object type of which the bits belongs to. They both have a constexpr
constructor taking either a reference or a pointer to a value of the underlying type, and a position
indicating the position of the bit. std::bit_reference gives access to a std::bit_pointer
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Bit value, reference, pointer and iterator design summary
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Figure 5: Design summary.

through its member operator&, and, reciprocally, std::bit_pointer gives access to a bit ref-
erence through its operators operator∗, operator−> and operator[]. std::bit_reference
implements the behaviour of a bit: it provides basic bit functionalities as well as a conversion
operator to a std::bit_value and an assignment operator taking a std::bit_value as a pa-
rameter. std::bit_value implements an independent bit and provides the same functionalities
as bit references. Stream operators are also overloaded for both bit values and references, to pro-
vide a display of 0 and 1 values. Finally, an interface to access the underlying information of
std::bit_reference, namely the address of the referenced object and the bit position, is pro-
vided to allow the writing of faster bit manipulation algorithms. std::bit_pointer emulates
the behaviour of a pointer to a bit, implementing all the classical functions operating on tradi-
tional pointers. A std::bit_pointer can be nulli�ed, and in that case, the underlying pointer
is set to nullptr and the position is set to 0. std::bit_iterator is built on the top of both
std::bit_reference and std::bit_pointer. It takes an iterator Iterator on an underlying
object type as a template parameter. std::bit_iterator::operator++ and other increment
and decrement operators implement the following behaviour: they iterate through the binary dig-
its of the underlying object, and execute the member Iterator::operator++ to go to the next
object once the last binary digit of the current object has been reached. This strategy allows to
iterate through contiguous, reversed, non-contiguous and virtually all possible iterable sequences
of unsigned integers. A std::bit_iterator can be constructed from an Iterator value and a
position, and it implements the traditional behaviour of a standard iterator, with its value type be-
ing a std::bit_value, its reference type being a std::bit_reference, its pointer type being a
std::bit_pointer and its category being std::iterator_traits<Iterator>::iterator_
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category. Finally, and for conveniency, the classes come with non-member functions to make
the right type of std::bit_reference, std::bit_pointer or std::bit_iterator based on a
provided reference, pointer, or iterator. All the design decisions are summarized in �gure 5.

Additional remarks: implicit conversions, swap operations, and cv-quali�ers

Additionally to the main design decisions listed in the previous subsection, some details deserve
a particular attention. The �rst one concern the implicit conversions between bit values and bit
references. A straightforward approach would be limited to the following:

• std::bit_value is implicitly constructible from unsigned char

• std::bit_value is implicitly convertible to bool

• std::bit_reference is assignable from std::bit_value

• std::bit_reference is implicitly convertible to std::bit_value

The problem with this strategy is that a bit reference would be two implicit conversions away
from binary arithmetic operators: in other words, adding a bit reference to another arithmetic
type would need a �rst conversion to std::bit_value and a second conversion to bool. But
these two conversions are user-de�ned and the [class.conv] section of the standard speci�es that,
at most, one user-de�ned conversion can be implicitly applied to a single value. Consequently,
and to avoid this problem, std::bit_reference should be made implicitly convertible to bool.
However, whether or not bit references should remain implicitly convertible to std::bit_value
too, as in the proposed design, is an open question.

The second remark concerns the std::swap function. Because the copy constructor and the
copy assignment operator of std::bit_reference do not act in the same way, std::swap has
to be overloaded. If we consider that bit values and bit references model the same fundamental
concept of a bit, we should consider the following overloads:

1 template <class UIntType >
2 void std::swap(
3 std:: bit_value& x,
4 std:: bit_reference <UIntType > y
5 );
6 template <class UIntType >
7 void std::swap(
8 std:: bit_reference <UIntType > x,
9 std:: bit_value& y

10 );
11 template <class UIntType1 , class UIntType2 >
12 void std::swap(
13 std:: bit_reference <UIntType1 > x,
14 std:: bit_reference <UIntType2 > y
15 );

Additionally, we should consider overloading the std::exchange function because the generic
version will not lead to the expected result for bit references:

1 template <class UIntType , class U = std::bit_value >
2 std:: bit_value std:: exchange(
3 std:: bit_reference <UIntType > obj ,
4 U&& new_val
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5 )

These overloads of std::swap and std::exchange are not currently included in the design, but
are left for discussion. Note that the same kind of questions arise for the comparison operators
of bit pointers.

The third remark involves cv-quali�ed bit references and pointers. If we consider a hypothet-
ical user-de�ned bit container, how should the typedefs const_reference and const_pointer
be de�ned? For clarity, we list below all the possibilities regarding the constness of bit refer-
ences and pointers, with T being a non cv-quali�ed unsigned integer type and with bit being a
hypothetical fundamental arithmetic type representing a bit:

• std::bit_reference<T> models a standard non cv-quali�ed reference, which is equiva-
lent to a bit&

• std::bit_reference<const T> models a reference to a constant and therefore mimics a
const bit&

• const std::bit_reference<T> models a constant reference to a non-constant type and
is the theoretical equivalent of a hypothetical bit& const, which does not compile

• const std::bit_reference<const T> models a constant reference to a constant type
and is the theoretical equivalent of a hypothetical const bit& const, which does not
compile

• std::bit_pointer<T> models a standard non cv-quali�ed pointer, equivalent to bit∗

• std::bit_pointer<const T> models a pointer to a constant and mimics a const bit∗

• const std::bit_pointer<T>models a constant pointer to a non-constant type and there-
fore mimics a bit∗ const

• const std::bit_pointer<const T> models a constant pointer to a constant type and
therefore mimics a const bit∗ const

Consequently, even if both const-quali�ed types const std::bit_reference<const T> and
const std::bit_reference<T> compile and can be useful as proxies to carry information
about the location and the position of a referenced bit, they should be used with care as they do not
have non-proxy equivalents. Moreover, given the listed de�nitions, it appears more clearly that
the operator−> of const std::bit_pointer<T> should return a pointer to a non cv-quali�ed
bit reference, or, in other words, a std::bit_reference<T>∗, instead of a const std::bit_
reference<T>∗. And to answer the original question, a const_reference typedef should be
de�ned as a std::bit_reference<const T> and a const_pointer typedef as a std::bit_
pointer<const T>. The last remark concern the implicit cv conversions of bit references and
bit pointers. In both cases, a default copy constructor and a constructor taking a reference
to the provided template parameter type as an input already handle most cases. However, a
std::bit_reference<const T> cannot be constructed from a std::bit_reference<T>, and
a std::bit_pointer<const T> cannot be constructed from a std::bit_pointer<T>. To make
it possible, we have to add generic conversion constructors of the form template <class T>
bit_reference(const bit_reference<T>& other) and of the form template <class T>
bit_pointer(const bit_pointer<T>& other). For bit pointers, an additional generic con-
version assignment operator is also required. This last point conclude the remarks and allow us
to detail the technical speci�cations.
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5 Technical speci�cations

Introduction

The design decisions described in section 4, lead to the technical speci�cations presented in the
following pages. A working C++14 implementation will be made available on a public GitHub
repository [Reverdy, 2016].

Naming

Before discussing the de�nitions of the bit utility class templates, we list all the names related to
this proposal, as well as possible alternatives. When these names already exist in the standard
library, or are inspired by existing names, they appear in blue and we provide the link of their
original source. Parentheses are used for optional pre�xes and su�xes and to avoid listing all
possible combinations. We start with the header name associated with the classes of this proposal
and which could be extended through for future work on bits:

Naming summary: header
Description Name Alternatives

Header (bit utilities, bit manipu-
lation functions. . . ) <bit>

<bits>
<bitwise>
<bit_utility>
<bitutils>
<bit_tools>

Then, we list the main class names. We prefer std::bit_value over std::bit because the
second one could be misleading, since the class it refers to does not correspond to a single bit in
memory, but instead wraps the value of a bit and provides the desired functionalities.

Naming summary: classes
Description Name Alternatives

Bit value class bit_value
bit
bitval
bit_val

Bit reference class template bit_reference
bitref
bit_ref

Bit pointer class template bit_pointer
bitptr
bit_ptr

Bit iterator class template bit_iterator
bititer
bit_iter

Then, we list the names used for template parameters:
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Naming summary: template parameters
Description Name Alternatives

Generic type T Type
Other generic type U Other(Type)

Unsigned integer type UIntType
UInt
UnsignedInteger(Type)

Iterator type Iterator It
Character type CharT
Character traits type Traits

and the names of member typedefs:
Naming summary: member types

Description Name Alternatives

Byte type from which a bit value
is constructible byte_type

byte
byte_t

Type to which a bit belongs to underlying_type
object_type
element_type
storage_type

Bit position type size_type
position_type
shift_type
offset_type

Bit distance type difference_type
Base iterator type iterator_type underlying_iterator(_type)

Iterator traits member types

value_type
difference_type
pointer
reference
iterator_category

Then, we list the names of function members:
Naming summary: function members

Description Name Alternatives

Swap function member swap
Set bit function member set
Reset bit function member reset
Flip bit function member flip
Underlying iterator access func-
tion member base (get_)(underlying_)iterator

Bit memory address access func-
tion member address

addressof
(get_)(underlying_)address
(get_)(underlying_)pointer
(get_)(underlying_)ptr

Bit position access function mem-
ber position

(get_)(underlying_)position
(get_)(underlying_)pos
(get_)(underlying_)shift
(get_)(underlying_)offset

as well as the names of non-member functions:
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Naming summary: functions
Description Name Alternatives

Non-member swap function swap

Bit reference creation function make_bit_reference
make_bitref
make_bit_ref

Bit pointer creation function make_bit_pointer
make_bitptr
make_bit_ptr

Bit iterator creation function make_bit_iterator
make_bititer
make_bit_iter

A �nally, the following names are used for function parameters:
Naming summary: parameters

Description Name Alternatives

Reference, pointer and iterator
ref
ptr
i

Position pos
Value to be assigned val
Increment or decrement n
Object to be copied or assigned other
Left-hand and right-hand sides of
an operator

lhs
rhs

Output and input streams os
is

Bit reference, pointer or iterator
in non-member functions x
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Bit value speci�cations

The speci�cations of std::bit_value are given on �gure 6.

Bit value synopsis
1 // Bit value class
2 class bit_value
3 {
4 public:
5
6 // Types
7 using byte_type = unsigned char;
8
9 // Lifecycle

10 bit_value () noexcept = default;
11 constexpr bit_value(byte_type val) noexcept;
12
13 // Conversion
14 constexpr operator bool() const noexcept;
15
16 // Operations
17 void set(bool val) noexcept;
18 void set() noexcept;
19 void reset() noexcept;
20 void flip() noexcept;
21
22 // Compound assignment operators
23 template <class T> bit_value& operator +=( const T& val) noexcept;
24 template <class T> bit_value& operator−=(const T& val) noexcept;
25 template <class T> bit_value& operator ∗=( const T& val) noexcept;
26 template <class T> bit_value& operator /=( const T& val) noexcept;
27 template <class T> bit_value& operator %=( const T& val) noexcept;
28 template <class T> bit_value& operator &=( const T& val) noexcept;
29 template <class T> bit_value& operator |=( const T& val) noexcept;
30 template <class T> bit_value& operator ^=( const T& val) noexcept;
31 template <class T> bit_value& operator <<=(const T& val) noexcept;
32 template <class T> bit_value& operator >>=(const T& val) noexcept;
33
34 // Increment and decrement operators
35 bit_value& operator ++() noexcept;
36 bit_value& operator−−() noexcept;
37 bit_value operator ++(int) noexcept;
38 bit_value operator−−(int) noexcept;
39 };
40
41 // Stream functions
42 template <class CharT , class Traits >
43 basic_ostream <CharT , Traits >& operator <<(
44 basic_ostream <CharT , Traits >& os,
45 const bit_value& x
46 );
47 template <class CharT , class Traits >
48 basic_istream <CharT , Traits >& operator >>(
49 basic_istream <CharT , Traits >& is,
50 bit_value& x
51 );

Figure 6: Bit value technical speci�cations
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Bit reference speci�cations

The speci�cations of std::bit_reference are given on �gures 7 and 8.

Bit reference synopsis
1 // Bit reference class template
2 template <class UIntType >
3 class bit_reference
4 {
5 public:
6
7 // Types
8 using underlying_type = UIntType;
9 using size_type = size_t;

10
11 // Lifecycle
12 template <class T> constexpr bit_reference(const bit_reference <T>& other) noexcept;
13 constexpr bit_reference(underlying_type& ref , size_type pos);
14
15 // Assignment
16 bit_reference& operator =(const bit_reference& other) noexcept;
17 bit_reference& operator =( bit_value val) noexcept;
18
19 // Conversion
20 constexpr operator bool() const noexcept;
21 constexpr operator bit_value () const noexcept;
22
23 // Access
24 constexpr bit_pointer <UIntType > operator &() const noexcept;
25
26 // Operations
27 template <class T> void swap(bit_reference <T> other );
28 void swap(bit_value& other );
29 void set(bool val) noexcept;
30 void set() noexcept;
31 void reset() noexcept;
32 void flip() noexcept;
33
34 // Compound assignment operators
35 template <class T> bit_reference& operator +=( const T& val) noexcept;
36 template <class T> bit_reference& operator−=(const T& val) noexcept;
37 template <class T> bit_reference& operator ∗=( const T& val) noexcept;
38 template <class T> bit_reference& operator /=( const T& val) noexcept;
39 template <class T> bit_reference& operator %=( const T& val) noexcept;
40 template <class T> bit_reference& operator &=( const T& val) noexcept;
41 template <class T> bit_reference& operator |=( const T& val) noexcept;
42 template <class T> bit_reference& operator ^=( const T& val) noexcept;
43 template <class T> bit_reference& operator <<=(const T& val) noexcept;
44 template <class T> bit_reference& operator >>=(const T& val) noexcept;
45
46 // Increment and decrement operators
47 bit_reference& operator ++() noexcept;
48 bit_reference& operator−−() noexcept;
49 bit_value operator ++(int) noexcept;
50 bit_value operator−−(int) noexcept;
51
52 // Underlying details
53 constexpr underlying_type∗ address () const noexcept;
54 constexpr size_type position () const noexcept;
55 };

Figure 7: Bit reference technical speci�cations
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Bit reference non-member functions
1 // Swap and exchange
2 template <class T, class U>
3 void swap(
4 bit_reference <T> lhs ,
5 bit_reference <U> rhs
6 ) noexcept;
7 template <class T>
8 void swap(
9 bit_reference <T> lhs ,

10 bit_value& rhs
11 ) noexcept;
12 template <class T>
13 void swap(
14 bit_value& lhs ,
15 bit_reference <T> rhs
16 ) noexcept;
17 template <class T, class U = bit_value >
18 bit_value exchange(
19 bit_reference <T> x,
20 U&& val
21 );
22
23 // Stream functions
24 template <class CharT , class Traits , class T>
25 basic_ostream <CharT , Traits >& operator <<(
26 basic_ostream <CharT , Traits >& os,
27 const bit_reference <T>& x
28 );
29 template <class CharT , class Traits , class T>
30 basic_istream <CharT , Traits >& operator >>(
31 basic_istream <CharT , Traits >& is,
32 const bit_reference <T>& x
33 );
34
35 // Make function
36 template <class T>
37 constexpr bit_reference <T> make_bit_reference(
38 T& ref ,
39 typename bit_reference <T>:: size_type pos
40 );

Figure 8: Bit reference non-member functions
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Bit pointer speci�cations

The speci�cations of std::bit_pointer are given on �gures 9 and 10.

Bit pointer synopsis
1 // Bit pointer class template
2 template <class UIntType >
3 class bit_pointer
4 {
5 public:
6
7 // Types
8 using underlying_type = UIntType;
9 using size_type = size_t;

10 using difference_type = intmax_t;
11
12 // Lifecycle
13 template <class T> constexpr bit_pointer(const bit_pointer <T>& other) noexcept;
14 bit_pointer () noexcept = default;
15 constexpr bit_pointer(nullptr_t) noexcept;
16 constexpr bit_pointer(underlying_type∗ ptr , size_type pos);
17
18 // Assignment
19 template <class T> bit_pointer& operator =(const bit_pointer <T>& other) noexcept;
20 bit_pointer& operator =(const bit_pointer& other) noexcept;
21
22 // Conversion
23 explicit constexpr operator bool() const noexcept;
24
25 // Access
26 constexpr bit_reference <UIntType > operator ∗() const;
27 constexpr bit_reference <UIntType >∗ operator−>() const;
28 constexpr bit_reference <UIntType > operator []( difference_type n) const;
29
30 // Increment and decrement operators
31 bit_pointer& operator ++();
32 bit_pointer& operator−−();
33 bit_pointer operator ++(int);
34 bit_pointer operator−−(int);
35 constexpr bit_pointer operator +( difference_type n) const;
36 constexpr bit_pointer operator−(difference_type n) const;
37 bit_pointer& operator +=( difference_type n);
38 bit_pointer& operator−=(difference_type n);
39 };

Figure 9: Bit pointer technical speci�cations
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Bit pointer non-member functions
1 // Non−member arithmetic operators
2 template <class T>
3 constexpr bit_pointer <T> operator +(
4 typename bit_pointer <T>:: difference_type n,
5 const bit_pointer <T>& x
6 );
7 template <class T, class U>
8 typename common_type <
9 typename bit_pointer <T>:: difference_type ,

10 typename bit_pointer <U>:: difference_type
11 >::type operator−(
12 const bit_pointer <T>& lhs ,
13 const bit_pointer <U>& rhs
14 ) noexcept;
15
16 // Comparison operators
17 template <class T, class U>
18 constexpr bool operator ==(
19 const bit_pointer <T>& lhs ,
20 const bit_pointer <U>& rhs
21 ) noexcept;
22 template <class T, class U>
23 constexpr bool operator !=(
24 const bit_pointer <T>& lhs ,
25 const bit_pointer <U>& rhs
26 ) noexcept;
27 template <class T, class U>
28 constexpr bool operator <(
29 const bit_pointer <T>& lhs ,
30 const bit_pointer <U>& rhs
31 ) noexcept;
32 template <class T, class U>
33 constexpr bool operator <=(
34 const bit_pointer <T>& lhs ,
35 const bit_pointer <U>& rhs
36 ) noexcept;
37 template <class T, class U>
38 constexpr bool operator >(
39 const bit_pointer <T>& lhs ,
40 const bit_pointer <U>& rhs
41 ) noexcept;
42 template <class T, class U>
43 constexpr bool operator >=(
44 const bit_pointer <T>& lhs ,
45 const bit_pointer <U>& rhs
46 ) noexcept;
47
48 // Make function
49 template <class T>
50 constexpr bit_pointer <T> make_bit_pointer(
51 T∗ ptr ,
52 typename bit_pointer <T>:: size_type pos
53 );

Figure 10: Bit pointer non-member functions
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Bit iterator speci�cations

The speci�cations of std::bit_iterator are given on �gures 11 and 12.

Bit iterator synopsis
1 // Bit iterator class template
2 template <class Iterator >
3 class bit_iterator
4 {
5 public:
6
7 // Types
8 using iterator_type = Iterator;
9 using underlying_type = typename iterator_traits <Iterator >:: value_type;

10 using iterator_category = typename iterator_traits <Iterator >:: iterator_category;
11 using value_type = bit_value;
12 using difference_type = intmax_t;
13 using pointer = bit_pointer <underlying_type >;
14 using reference = bit_reference <underlying_type >;
15 using size_type = size_t;
16
17 // Lifecycle
18 template <class T> bit_iterator(const bit_iterator <T>& other );
19 bit_iterator ();
20 bit_iterator(const iterator_type& i, size_type pos);
21
22 // Access
23 reference operator ∗() const;
24 pointer operator−>() const;
25 reference operator []( difference_type n) const;
26
27 // Increment and decrement operators
28 bit_iterator& operator ++();
29 bit_iterator& operator−−();
30 bit_iterator operator ++( int);
31 bit_iterator operator−−(int);
32 bit_iterator operator +( difference_type n) const;
33 bit_iterator operator−(difference_type n) const;
34 bit_iterator& operator +=( difference_type n);
35 bit_iterator& operator−=(difference_type n);
36
37 // Underlying details
38 iterator_type base() const;
39 constexpr size_type position () const noexcept;
40 };

Figure 11: Bit iterator technical speci�cations
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Bit iterator: non-member functions
1 // Non−member arithmetic operators
2 template <class T>
3 bit_iterator <T> operator +(
4 typename bit_iterator <T>:: difference_type n,
5 const bit_iterator <T>& i
6 );
7 template <class T, class U>
8 typename common_type <
9 typename bit_iterator <T>:: difference_type ,

10 typename bit_iterator <U>:: difference_type
11 >::type operator−(
12 const bit_iterator <T>& lhs ,
13 const bit_iterator <U>& rhs
14 );
15
16 // Comparison operators
17 template <class T, class U>
18 bool operator ==(
19 const bit_iterator <T>& lhs ,
20 const bit_iterator <U>& rhs
21 );
22 template <class T, class U>
23 bool operator !=(
24 const bit_iterator <T>& lhs ,
25 const bit_iterator <U>& rhs
26 );
27 template <class T, class U>
28 bool operator <(
29 const bit_iterator <T>& lhs ,
30 const bit_iterator <U>& rhs
31 );
32 template <class T, class U>
33 bool operator <=(
34 const bit_iterator <T>& lhs ,
35 const bit_iterator <U>& rhs
36 );
37 template <class T, class U>
38 bool operator >(
39 const bit_iterator <T>& lhs ,
40 const bit_iterator <U>& rhs
41 );
42 template <class T, class U>
43 bool operator >=(
44 const bit_iterator <T>& lhs ,
45 const bit_iterator <U>& rhs
46 );
47
48 // Make function
49 template <class T>
50 bit_iterator <T> make_bit_iterator(
51 const T& i,
52 typename bit_iterator <T>:: size_type pos
53 );

Figure 12: Bit iterator non-member functions
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6 Alternative technical speci�cations

Introduction

Accordingly to the feedback gathered online, we decided to detail an alternative design. This
suggestion of design is based on the alternative that consists in considering that the mathematical
de�nition of a bit is a pure digit, and only a digit, and, as is, it should not provide any arithmetic
behaviour. This can be easily achieved by stripping std::bit_value and std::bit_reference
from their operators and from their implicit conversion members, and by keeping std::bit_
pointer and std::bit_iterator the same.

Alternative bit value speci�cations

The alternative speci�cations of std::bit_value are given on �gure 13.

Alternative bit reference speci�cations

The alternative speci�cations of std::bit_reference are given on �gure 14.

Bit pointer speci�cations

The speci�cations of std::bit_pointer are given on �gures 9 and 10.

Bit iterator speci�cations

The speci�cations of std::bit_iterator are given on �gures 11 and 12.
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Alternative bit value synopsis
1 // Alternative bit value class
2 class bit_value
3 {
4 public:
5
6 // Types
7 using byte_type = unsigned char;
8
9 // Lifecycle

10 bit_value () noexcept = default;
11 explicit constexpr bit_value(byte_type val) noexcept;
12
13 // Assignment
14 bit_value& operator =( byte_type val) noexcept;
15
16 // Conversion
17 explicit constexpr operator bool() const noexcept;
18
19 // Operations
20 void set(bool val) noexcept;
21 void set() noexcept;
22 void reset() noexcept;
23 void flip() noexcept;
24 };
25
26 // Comparison operators
27 constexpr bool operator ==(
28 const bit_value& lhs ,
29 const bit_value& rhs
30 ) noexcept;
31 constexpr bool operator !=(
32 const bit_value& lhs ,
33 const bit_value& rhs
34 ) noexcept;
35 constexpr bool operator <(
36 const bit_value& lhs ,
37 const bit_value& rhs
38 ) noexcept;
39 constexpr bool operator <=(
40 const bit_value& lhs ,
41 const bit_value& rhs
42 ) noexcept;
43 constexpr bool operator >(
44 const bit_value& lhs ,
45 const bit_value& rhs
46 ) noexcept;
47 constexpr bool operator >=(
48 const bit_value& lhs ,
49 const bit_value& rhs
50 ) noexcept;
51
52 // Stream functions
53 template <class CharT , class Traits >
54 basic_ostream <CharT , Traits >& operator <<(
55 basic_ostream <CharT , Traits >& os,
56 const bit_value& x
57 );
58 template <class CharT , class Traits >
59 basic_istream <CharT , Traits >& operator >>(
60 basic_istream <CharT , Traits >& is,
61 bit_value& x
62 );

Figure 13: Alternative bit value technical speci�cations
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Alternative bit reference synopsis
1 // Alternative bit reference class template
2 template <class UIntType >
3 class bit_reference
4 {
5 public:
6
7 // Types
8 using underlying_type = UIntType;
9 using size_type = size_t;

10
11 // Lifecycle
12 template <class T> constexpr bit_reference(const bit_reference <T>& other) noexcept;
13 constexpr bit_reference(underlying_type& ref , size_type pos);
14
15 // Assignment
16 bit_reference& operator =(const bit_reference& other) noexcept;
17 bit_reference& operator =( bit_value val) noexcept;
18
19 // Conversion
20 constexpr operator bit_value () const noexcept;
21
22 // Access
23 constexpr bit_pointer <UIntType > operator &() const noexcept;
24
25 // Operations
26 template <class T> void swap(bit_reference <T> other );
27 void swap(bit_value& other );
28 void set(bool val) noexcept;
29 void set() noexcept;
30 void reset() noexcept;
31 void flip() noexcept;
32
33 // Underlying details
34 constexpr underlying_type∗ address () const noexcept;
35 constexpr size_type position () const noexcept;
36 };
37
38 // Swap and exchange
39 template <class T, class U>
40 void swap(
41 bit_reference <T> lhs ,
42 bit_reference <U> rhs
43 ) noexcept;
44 template <class T>
45 void swap(
46 bit_reference <T> lhs ,
47 bit_value& rhs
48 ) noexcept;
49 template <class T>
50 void swap(
51 bit_value& lhs ,
52 bit_reference <T> rhs
53 ) noexcept;
54 template <class T, class U = bit_value >
55 bit_value exchange(
56 bit_reference <T> x,
57 U&& val
58 );
59
60 // Make function
61 template <class T>
62 constexpr bit_reference <T> make_bit_reference(
63 T& ref ,
64 typename bit_reference <T>:: size_type pos
65 );

Figure 14: Alternative bit reference technical speci�cations
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7 Discussion and open questions

As a �rst version, the intent of this proposal is to start a discussion about the introduction of basic
bit utilities in the standard library. Several design options have been detailed in section 4, and
the speci�cation presented in part 5 represents only one option amongst multiple alternatives.
Answering the following questions are of primary importance regarding design and speci�cation
choices:

• What types should be allowed as template parameters of std::bit_reference and std::
bit_pointer? Only unsigned integers? All integral types? And what about bit containers?

• What functionalities and arithmetic should a bit implement? A design with set, reset and
flip operators? Or one emulating a bool and nothing else? Or one adding the arithmetic
behaviour of an unsigned integer of exactly one bit?

• Should std::bit_value be introduced to improve the global design? Should the naming
std::bit be used instead of std::bit_value, even though the class is not a bit an only
mimics the behaviour of a non-referenced bit value?

• Should bit references be both implicitly convertible to bool and std::bit_value?
• Should bit pointers be implicitly or explicitly convertible to bool to check their state?
• Should other overloads of std::swap and std::exchange be provided as described in the

additional design remarks subsection?
• Should const versions of the class templates be provided separately in order to replace

the solution consisting in passing const T as template parameters? Or should typedefs
referring to std::bit_reference<const T> and std::bit_pointer<const T> be pro-
vided?

• How should the internal details, namely the address of the underlying value and the bit
position, be accessed? Are underlying_type, address and position good names for
these underlying details? Should the pos parameter be of type std::size_t?

• Should set, reset and flip be provided as non-member functions with di�erent names
to avoid con�ict with std::set, even though these functionalities are very particular to
bits?

• What should happen when pos >= std::numeric_limits<T>::digits?
• Should a type traits helper structure such as std::iterable_bits be introduced to count

the number of iterable bits of unsigned integral types in order to replace std::numeric_
limits<T>::digits?

• What functions should be speci�ed as constexpr and what members should be speci�ed
as noexcept? In particular, could the constructors of std::bit_iterator and its base
member function be marked as constexpr to facilitate compile-time computation?

• Should any relation be introduced between std::bit_reference and std::bitset::
reference? Or should they be kept as two completely independent entities in terms of
design as in this version of the proposal?

• Would this design be compatible with the range proposal and a future range of bits? In this
regard, should std::bit_value be parameterized by a template type?
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Answering and achieving a consensus on these questions should lead to a minimalist but
very versatile set of tools to manipulate unique bits. We have chosen to illustrate the two ap-
proaches that we consider to be the most consistent: either a bit with the values 0 or 1 can be
considered as a number, and in that case, one of the best option is to provide the arithmetic
behaviour of a one-bit long unsigned integer, or it should be considered as a pure digit and
therefore have no arithmetic operators. Between these two options, there is a grey area, that
we �nd to be very error-prone. Identifying bits and boolean values is one of them, since the
arithmetic of bool implicitly promoted to int is particularly non-intuitive as illustrated in the
introductory listing of section 4. A bit and a bool are conceptually two di�erent objects, or, in
other words, a bit is not a bool. Even in the current standard, std::bitset::reference and
std::vector<bool>::reference do not mimic booleans: a bool has compound assignment
operators, that the two classes do not have, and the behaviour of the operator∼ is very di�erent
for a bool and for the nested classes. We argue that one of the main fundamental reason why
the template specialization std::vector<bool> is considered by many as a bad design decision,
can be boiled down to the fact that bits and booleans are two di�erent things, even if both hap-
pen to have two values. The same decision was not made for std::array: an array of bool
and an array of bits are two di�erent things, and the last one is named a std::bitset. Both
the design we illustrated, include std::bit_value: the �rst one requires it for arithmetic oper-
ations, and the second one requires it to block all implicit conversions to bool that would lead to
confusion.

Bit manipulation algorithms should be the subject of another proposal built on the top of
the fundamental layer discussed here. Such a library could include a std::bit_view, as well
as specializations of the standard algorithms. As already mentioned in section 2, thanks to the
address and position members, the algorithms could operate on the underlying_type in-
stead of operating on each bit, thus providing a signi�cant speedup. For example, std::count
could call the popcnt assembly function when operating on bit iterators. Moreover the set of
standard algorithms could be extended with algorithms dedicated to bit operations. These ex-
tensions could include, amongst others, algorithms inspired by the very exhaustive proposal
N3864 [Fioravante, 2014], algorithms implementing unsigned unbounded integer arithmetic, and
algorithms based on the Bit Manipulation Instruction sets such as parallel_bit_deposit and
parallel_bit_extract.

The resulting bit library could serve a wide range of purposes, from cryptography to video
games, and from arbitrary-precision integral arithmetic to high performance computing. And, of
course, it could �nally o�er a proper way to use unsigned integers as bit containers.
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