
A proposal to add a utility class to represent expected monad

Document number: N4015
Date:
Revises:
Project:

2014-05-20
None
JTC1.22.32 Programming
Language C++

Reply to: Vicente J. Botet Escriba
<vicente.botet@wanadoo.fr>
Pierre Talbot <ptalbot@hyc.io>

Contents

1 Introduction 1

2 Motivation and Scope 1

3 Use cases 3

4 Impacts on the Standard 8

5 Design rationale 8

6 Related types 21

7 Open questions 24

8 Proposed Wording 25

9 Implementability 43

10 Acknowledgement 43

1 Introduction
Class template expected<E,T> proposed here is a type that may contain a value of type T or a value of type E in
its storage space. T represents the expected value, E represents the reason explaining why it doesn’t contains a
value of type T, that is the unexpected value. Its interface allows to query if the underlying value is either the
expected value (of type T) or an unexpected value (of type E). The original idea comes from Andrei Alexandrescu
C++ and Beyond 2012: Systematic Error Handling in C++ talk [?]. The interface and the rational are based
on std::optional N3793 [?] and Haskell monads. We can consider that expected<E,T> is a generalization of
optional<T> providing in addition a monad interface and some specific functions associated to the unexpected
type E. It requires no changes to core language, and breaks no existing code.

2 Motivation and Scope
Basically, the two main error mechanisms are exceptions and return codes. Before further explanation, we
should ask us what are the characteristics of a good error mechanism.

• Error visibility Failure cases should appears throughout the code review. Because the debug can be
painful if the errors are hidden.

• Information on errors The errors should carry out as most as possible information from their origin,
causes and possibly the ways to resolve it.

1

mailto:vicente.botet@wanadoo.fr
mailto:ptalbot@hyc.io

Exception Return code

Visibility Not visible without further
analysis of the code. However, if
an exception is thrown, we can
follow the stack trace.

Visible at the first sight by
watching the prototype of the
called function. However
ignoring return code can lead to
undefined results and it can be
hard to figure out the problem.

Informations Exceptions can be arbitrarily
rich.

Historically a simple integer.
Nowadays, the header
<system_error> provides richer
error code.

Clean code Provides clean code, exceptions
can be completely invisible for
the caller.

Force you to add, at least, a if
statement after each function
call.

Non-Intrusive Proper communication channel. Monopolization of the return
channel.

Table 1: Comparison between two error handling systems.

• Clean code The treatment of errors should be in a separate layer of code and as much invisible as
possible. So the code reader could notice the presence of exceptional cases without stop his reading.

• Non-Intrusive error The errors should not monopolize a communication channel dedicated to the normal
code flow. They must be as discrete as possible. For instance, the return of a function is a channel that
should not be exclusively reserved for errors.

The first and the third characteristic seem to be quite contradictory and deserve further explanation. The
former points out that errors not handled should appear clearly in the code. The latter tells us that the error
handling mustn’t interfere with the code reading, meaning that it clearly shows the normal execution flow. A
comparison between the exception and return codes is given in the table 1.

2.1 Alexandrescu Expected class
We can do the same analysis for the Expected<T> class from Alexandrescu talk [?]:

• Error visibility It takes the best of the exception and error code. It’s visible because the return type is
Expected<T> and if the user ignore the error case, it throws the contained exception.

• Information As rich as exception.

• Clean code It’s up to the programmer to choose handling errors as error code or to throw the contained
exception.

• Non-Intrusive Use the return channel without monopolizing it.

Other characteristics of Expected<T>:

• Associates errors with computational goals.

• Naturally allows multiple exceptions inflight.

• Switch between “error handling” and “exception throwing” styles.

• Teleportation possible.

– Across thread boundaries.
– Across nothrow subsystem boundaries.
– Across time: save now, throw later.

• Collect, group, combine exceptions.

However Expected<T> class also has some minor limitations:

2

• The error code must be an exception.

• It doesn’t provide a better solution to resolve errors. You can throw or use the hasException<E>() function
to test errors which is similar to the old switch case statement.

• The function hasException<E>() test the type and so cannot distinguish two different errors from the same
exception. Exception can contains multiple error case scenarios (think about std::invalid_argument).

2.2 Differences between the proposed expected class and Alexandrescu Expected
class

The main enhancements or differences of the proposed expected<E,T> respect to Expected<T> are:

• expected<E,T> parameterizes the root cause that prevents its creation, expected<E,T> is either a T or the
root cause E that prevents its creation.

• expected<E,T> is default constructible.

• expected<E,T> is implicitly constructible from an unexpected_type<E>.

• expected<E,T> is a monad error (see [?]).

3 Use cases

3.1 Safe division
This first example shows how to define a safe divide operation checking for divide-by-zero conditions. Using
exceptions, we might write something like this:

struct DivideByZero: public std::exception {...};

int safe_divide(int i, int j)
{

if (j==0) throw DivideByZero();
else return i / j;

}

Which, using expected<exception_ptr,int>, turns to:
expected<exception_ptr,int> safe_divide(int i, int j)
{

if (j==0) return make_unexpected(DivideByZero()); // (1)
else return i / j; // (2)

}

(1) The implicit conversion from unexpected_type<E> to expected<E,T> and (2) from T to expected<E,T>
prevents using too much boilerplate code. The advantages are that we have a clean way to fail without using
the exception machinery, and we can give precise information about why it failed as well. The liability is that
this function is going to be tedious to use. For instance, the exception based function:

int f1(int i, int j, int k)
{

return i + safe_divide(j,k);
}

becomes using expected<exception_ptr,int>:
expected<exception_ptr,int> f1(int i, int j, int k)
{

auto q = safe_divide(j, k)
if(q) return i + *q;
else return q;

}

However expected<E,T> delivers cleaner code when used in a functional style:

3

expected<exception_ptr,int> f1(int i, int j, int k)
{

return safe_divide(j, k).fmap([&](int q){
return i + q;

});
}

The fmap members calls the continuation provided if expected contains a value, otherwise it forwards the
error to the callee. Using lambda function might clutter the code, so here an example using functor:

expected<exception_ptr,int> f1(int i, int j, int k)
{

return safe_divide(j, k).fmap(bind(plus, i, _1));
}

We can use expected<E, T> to represent different error conditions. For instance, with integer division, we
might want to fail if the two numbers are not evenly divisible as well as checking for division by zero. We can
improve our safe_divide function accordingly:

struct NotDivisible: public std::exception
{

int i, j;
NotDivisible(int i, int j) : i(i), j(j) {}

};

expected<exception_ptr,int> safe_divide(int i, int j)
{

if (j == 0) return make_unexpected(DivideByZero());
if (i%j != 0) return make_unexpected(NotDivisible(i,j));
else return i / j;

}

Now we have a division function for integers that possibly fail in two ways. However, it’s not easy to write
code that detect which of the two conditions occurred. For instance, we might have situations where dividing
two integers which are not evenly divisible is OK (we just throw away the remainder) but division by zero is
probably never going to be OK. Let’s try to write this using our safe_divide function, first using exceptions:

T divide(T i, T j)
{

try
{

return safe_divide(i,j)
}
catch(NotDivisible& ex)
{

return ex.i/ex.j;
}
catch(...)
{

throw;
}

}

and then using expected<E,T>:
expected<exception_ptr,int> divide(int i, int j)
{

auto e = safe_divide(i,j);
if(e.has_exception<NotDivisible>())

return i/j;
else

return e;
}

The has_exception function throws the contained exception and thus should not be called multiple times to
discriminate over exceptions in an if-else statement if we care about performances. A more efficient way is
shown in section 3.2.1.

expected<exception_ptr,int> divide(int i, int j)
{

4

return safe_divide(i,j).catch_excception<NotDivisible>([](auto &ex)
return ex.i/ex.j;

});
}

Lets continue with the exception-oriented function i/k + j/k:
int f2(int i, int j, int k)
{

return safe_divide(i,k) + safe_divide(j,k);
}

Now let’s write this code using an expected<E,T> type and an imperative flavour:
expected<exception_ptr,int> f2(int i, int j, int k)
{

auto q1 = safe_divide(i, k);
if (!q1) return q1;

auto q2 = safe_divide(j, k);
if (!q2) return q2;

return *q1 + *q2;
}

This is nice in the sense that whenever there is an error we get a specific error result. However the “clean
code” characteristic introduced in section 2 is not well-respected as the readability doesn’t differ much from the
“C return code”. We can rewrite this using a functional style using the member function mbind1:as follows:

expected<exception_ptr,int> f(int i, int j, int k)
{

return safe_divide(i, k).mbind([=](int q1) {
return safe_divide(j,k).fmap([=](int q2) {

return q1+q2;
});

});
}

The error-handling code has completely disappeared but the lambda functions are a new source of noise,
and this is even more important with n expected variables. A cleaner solution uses the variadic free function
fmap2:

expected<exception_ptr,int> f(int i, int j, int k)
{

return fmap(plus,
safe_divide(i, k),
safe_divide(j, k));

}

The function fmap returns the first erroneous expected argument or, if they all contain a value, the result of
the plus operation.

Now let’s rewrite this using a possible C++ language extension: adding a DO expression like the Haskell
do expression. It is something similar to the await extension for futures however it is not limited to futures. It
could works for any monad.

The grammar could be
do-expression ::= do-initialization ’:’ do-expression-or-expression

do-expression-or-expression ::= do-expression | expression

do-initialization ::= type var ’<-’ expression

The meaning of do-expression is given by a transformation [[]]

[[do-expression]] =
mbind(expression,[&](type var) {

return [[do-expression-or-expression]]
});

1mbind stands for “monadic bind”.
2fmap stands for “functor map”.

5

The previous function could be written as
expected<exception_ptr,int> f2(int i, int j, int k)
{

return (
auto s1 <- safe_divide(i, k) :
auto s2 <- safe_divide(j, k) :
s1 + s2

);
}

resulting in the transformed C++ code
expected<exception_ptr,int> f2(int i, int j, int k)
{

return mbind(safe_divide(i, k) ,[&r](auto s1) {
return mbind(safe_divide(j, k),[&r](auto s2) {

return s1 + s2;
});

});
}

This would give the exact same results as the previous version. However, the function f2 is much simpler
and clearer than f because it doesn’t have to explicitly handle any of the error cases. When an error case occurs,
it is returned as the result of the function, but if not, the correct result of a subexpression is bound to a name
(s1 or s2), and that result can be used in later parts of the computation. The code is a lot simpler to write.
The more complicated the error-handling function, the more important this will be.

But, the standard doesn’t have this DO expression yet. Waiting for a do-statement the user could define
some macros (see [?] and define f2 as

expected<exception_ptr,int> f2(int i, int j, int k)
{

return DO (
(s1, safe_divide(i, k))
(s2, safe_divide(j, k))
s1 + s2

);
}

In the case of expected and optional, that is, monads that are always ready and have only one value stored,
the following macro

#define EXPECT(V, EXPR) \
auto BOOST_JOIN(expected,V) = EXPR; \
if (! has_value(BOOST_JOIN(expected,V))) return get_unexpected(BOOST_JOIN(expected,V)); \
auto V = deref(BOOST_JOIN(expected,V))

can be used to obtain the same result.
expected<exception_ptr,int> f2(int i, int j, int k)
{

EXPECT(s1, safe_divide(i, k));
EXPECT(s2, safe_divide(j, k));
return s1 + s2;

}

Note that this meaning of EXPECT is not valid for the list monad.

3.2 Error retrieval and correction
The major advantage of expected<E,T> over optional<T> is the ability to transport un error, but we didn’t come
yet to an example that retrieve the error. First of all, we should wonder what a programmer do when a function
call returns an error:

1. Ignore it.

2. Delegate the responsibility of error handling to higher layer.

3. Trying to resolve the error.

6

Because the first behaviour might lead to buggy application, we won’t consider it in a first time. The
handling is dependent of the underlying error type, we consider the exception_ptr and the error_condition
types.

3.2.1 Exception-based expected

The following example (previously introduced in section 3.1) shows how to transform an expected interface into
the corresponding exception one’s. It is useful if we want to switch over different error-handling style.

int f2(int i, int j, int k)
{

// if the underlying expected doesn’t contain a value
// it throws the contained exception.
int q1 = safe_divide(i, k).value();
int q2 = safe_divide(j, k).value();

return q1 + q2;
}

In some cases, even if the underlying error system is exception-based, we don’t want to throw it away but
to directly recover from the unexpected value.

int divide_or_0(int i, int j) noexcept
{

auto e = safe_divide(i,j);
return *(e.catch_error(const exception_ptr& e) {

return 0;
}));

}

The catch_error function calls the continuation if the expected is erroneous. In some case, we’ll be able to
recover only from a subset of the possible error. With exception, the most efficient way is to throw the contained
exception and catch the ones we’re able to recover from.

expected<exception_ptr,int> divide_lower_bound(int i, int j)
{

auto e = safe_divide(i,j);
return e.catch_error(const exception_ptr& e) {

try
{

rethrow_exception(e);
}
// If it failed because it wasn’t an integer division.
catch(const NotDivisible& d)
{

return d.i/d.j;
}
catch(...)
{

return make_unexpected(e);
}

});
}

Some might argue that this solution is nearly identical to the one with exception-only presented in section
3.1. The main advantages are the error treatment isolation (it can be encapsulated in a function) and we keep
the basic advantages of expected despite manipulating exception.

A better alternative in this case is to use the catch_exception member function
expected<exception_ptr,int> divide_lower_bound(int i, int j)
{

return safe_divide(i,j)
.catch_exception<NotDivisible>(auto& d) // If it failed because it wasn’t divisible.

{
return d.i/d.j;

}
);

}

7

3.2.2 Error-based expected

The two last examples would work similarly with any other kinds of error. For example here we’re using the
error_condition type.

When the Error template parameter is not std::exception_ptr, the functions has_exception() and catch_exception()
have no sense. In this case the user could use the member function error()).

expected<error_condition, int> divide_lower_bound(int i, int j)
{

auto e = safe_divide(i,j);
if (!e && e.error() == divide_err::not_divisible) {

return i/j;
}
return e;

}

The member function catch_error could be used with a continuations passing style to try to recover from
an error.

expected<error_condition, int> divide_lower_bound(int i, int j)
{

auto e = safe_divide(i,j);
return e.catch_error([i,j](const error_condition& e){

if(e.value() == divide_err::not_divisible)
{

return i/j;
}
else
{

return make_unexpected(e);
}

});
}

The code is similar to the one with exceptions but do not suffer from performance issue since we don’t
re-throw exceptions.

As expected<error_condition, int> doesn’t store a exception, when it doesn’t contains a value the member
function value throws a bad_expected_access exception wrapping the stored error.

4 Impacts on the Standard
These changes are entirely based on library extensions and do not require any language features beyond what
is available in C++ 14. It requires however the in_place_t from N3793.

5 Design rationale
The same rationale described in [?] for optional<T> applies to expected<E,T> and expected< nullopt_t, T>
should behave as optional<T>. That is, we see expected<E,T> as optional<T> for which all the values of E
collapse into a single value nullopt. In the following sections we present the specificities of the rationale in [?]
applied to expected<E,T>.

5.1 Conceptual model of expected<E,T>

expected<E,T> models a discriminated union of types T and unexpected_type<E>. expected<E,T> is viewed as
a value of type T or value of type unexpected_type<E>, allocated in the same storage, along with the way of
determining which of the two it is.

The interface in this model requires operations such as comparison to T, comparison to E, assignment and
creation from either. It is easy to determine what the value of the expected object is in this model: the type it
stores (T or E) and either the value of T or the value of E.

Additionally, within the affordable limits, we propose the view that expected<E,T> extends the set of the
values of T by the values of type E. This is reflected in initialization, assignment, ordering, and equality
comparison with both T and E. In the case of optional<T>, T can not be a nullopt_t. As the types T and E
could be the same in expected<E,T>, there is need to tag the values of E to avoid ambiguous expressions. The

8

make_unexpected(E) function is proposed for this purpose. However T can not be unexpected_type<E> for a given
E.

expected<string, int> ei = 0;
expected<string, int> ej = 1;
expected<string, int> ek = make_unexpected(string());

ei = 1;
ej = make_unexpected(E());;
ek = 0;

ei = make_unexpected(E());;
ej = 0;
ek = 1;

5.2 Initialization of expected<E,T>

In cases T and E are value semantic types capable of storing n and m distinct values respectively, expected<E,T>
can be seen as an extended T capable of storing n + m values: these that T and E stores. Any valid initialization
scheme must provide a way to put an expected object to any of these states. In addition, some T’s are not
CopyConstructible and their expected variants still should constructible with any set of arguments that work
for T.

As in [?], the model retained is to initialize either by providing either an already constructed T or a tagged
E.

string s{"STR"};

expected<exception_ptr,string> es{s}; // requires Copyable<T>
expected<exception_ptr,string> et = s; // requires Copyable<T>
expected<exception_ptr,string> ev = string{"STR"}; // requires Movable<T>

expected<exception_ptr,string> ew; // unexpected value
expected<exception_ptr,string> ex{}; // unexpected value
expected<exception_ptr,string> ey = {}; // unexpected value
expected<exception_ptr,string> ez = expected<exception_ptr,string>{}; // unexpected value

In order to create a unexpected object a special function needs to be used: make_unexpected:
expected<int, string> ep{make_unexpected(-1)}; // unexpected value, requires Movable<E>
expected<int, string> eq = {make_unexpected(-1)}; // unexpected value, requires Movable<E>

As in [?], and in order to avoid calling move/copy constructor of T, we use a ’tagged’ placement constructor:
expected<exception_ptr,MoveOnly> eg; // unexpected value
expected<exception_ptr,MoveOnly> eh{}; // unexpected value
expected<exception_ptr,MoveOnly> ei{in_place}; // calls MoveOnly in place
expected<exception_ptr,MoveOnly> ej{in_place, "arg"}; // calls MoveOnly"arg" in place

To avoid calling move/copy constructor of E, we use a ’tagged’ placement constructor:
expected<string,int> ei{unexpect}; // unexpected value, calls string in place
expected<string,int> ej{unexpect, "arg"}; // unexpected value, calls string"arg" in place

An alternative name for in_place that is coherent with the unexpect could be expect. Been compatible with
optional<T> seems more important. So this proposal doesn’t propose such a expect tag.

The alternative and also comprehensive initialization approach, which is not compatible with the choice to
default construct expected<E,T> to E(), could be to have a variadic perfect forwarding constructor that just
forwards any set of arguments to the constructor of the contained object of type T.

5.3 Almost Never-empty guaranty
As boost::variant<unexpected_type<E>,T, expected<E,T> ensures that it is never empty. All instances v of type
expected<E,T> guarantee that v has constructed content of one of the types T or E, even if an operation on v has
previously failed.

This implies that expected may be viewed precisely as a union of exactly its bounded types. This "never-
empty" property insulates the user from the possibility of undefined expected content and the significant addi-
tional complexity-of-use attendant with such a possibility.

9

5.3.1 The default constructor

• std::experimental::optional<T> default constructs to an optional with no value.

• boost::variant<T,E> default constructs to a variant with the value T() it T is default constructible or to
the value E() it E is default constructible or it is ill formed otherwise.

• std::future<T> default constructs to an invalid future with no shared state associated, that is, no value
and no exception.

• std::experimental::optional<T> default constructor is equivalent to boost::variant<nullopt_t, T>.

• Should the default constructor of std::experimental::expected<E,T> behave like boost::variant<T,E> or
as boost::variant<E,T>?

• Should the default constructor of std::experimental::expected<E,T> behave like std::experimental::optional<boost::variant<T,E>>?

• Should the default constructor of std::experimental::expected<nullopt_t,T> behave like std::experimental::optional<T>?
If yes, how should behave the default constructor of std::experimental::expected<E,T>? as if initialized
with make_unexpected(E())? This will be equivalent to the initialization of boost::variant<E,T>.

• Should std::experimental::expected<E,T> provide a default constructor at all? [?] present valid arguments
against this approach, e.g. array<optional<T>> would not be possible.

Requiring E to be default constructible seems less constraining than requiring T to be default constructible.
E.g. consider the Date example in [?]. With the same semantics expected<E,Date> would be Regular with a
meaningful not-a-date state created by default.

There is still a minor issue as the default constructor of std::exception_ptr doesn’t contains an exception
and so getting the value of a default constructed expected<exception_ptr, T> would need to check if the stored
std::exception_ptr is equal to std::exception_ptr() and throw a specific exception.

The authors consider the arguments in [?] valid and so propose that expected<E,T> default constructor should
behave as constructed with make_unexpected(E()).

5.3.2 Conversion from T

An object of type T is convertible to an expected object of type expected<E,T>:
expected<exception_ptr,int> ei = 1; // works

This convenience feature is not strictly necessary because you can achieve the same effect by using tagged
forwarding constructor:

expected<exception_ptr,int> ei{in_place, 1};

If the latter appears too inconvenient, one can always use function make_expected described below:
expected<exception_ptr,int> ei = make_expected(1);
auto ej = make_expected(1);

5.3.3 Using make_unexpected to convert from E

An object of type E is not convertible to an unexpected object of type expected<E,T>:
The proposed interface uses a special tag unexpect and a special non-member make_unexpected function to

indicate an unexpected state for expected<E,T>. It is used for construction and assignment. This might rise a
couple of objections. First, this duplication is not strictly necessary because you can achieve the same effect by
using the unexpect tagged forwarding constructor:

expected<int, string> exp1 = make_unexpected(1);
expected<int, string> exp2 = {unexpect, 1};

exp1 = make_unexpected(1);
exp2 = {unexpect, 1};

While some situations would work with unexpect, ... syntax, using make_expected makes the programmer’s
intention as clear and less cryptic. Compare these:

10

expected<int, vector<int>> get1() {
return {unexpect, 1};

}

expected<int, vector<int>> get2() {
return make_unexpected(1);

}

expected<int, vector<int>> get3() {
return expected<int, vector<int>>{unexpect, 1};

}

The usage of make_unexpected is also a consequence of the adapted model for expected: a discriminated
union of T and unexpected_type<E>. While make_unexpected(E) has been chosen because it clearly indicates that
we are interested in creating an unexpected expected<E,T> (of unspecified type T), it could be used also to make
a ready future with a specific exception, but this is outside the scope of this proposal.

Note also that the definition of the result type of make_unexpected has explicitly deleted default constructor.
This is in order to enable the reset idiom

exp2 = {};

which would otherwise not work because of ambiguity when deducing the right-hand side argument.

5.3.4 Why not a make_unexpected nested function on expected<E,T>?

[?] Expected<T> class has a nested member function Expected<T>::from_error(E) instead of the free function
make_unexpected. But the proposed expected<E,T> has an additional template parameter E and so the type E
would be explicit.

expected<unsigned, string> ei = expected<unsigned, string>::make_unexpected(1);

This has however several advantages. Namespace std is not polluted with an additional expected-specific
name. Also, it resolves certain ambiguities when types like expected<E, expected<E,T» are involved:

expected<int, expected<int, string>> eei =
expected<int, string>::make_unexpected(1); // valued

expected<int, expected<int, string>> eej =
expected<int, expected<int, string>>::make_unexpected(1); // disengaged

void fun(expected<int, string>);
void fun(expected<int, int>);

fun(expected<int, string>::make_unexpected(1)); // unambiguous: a typeless make_unexpected would not do

Yet, we choose to propose a free function because we consider the above problems rare and a free function
offers a very short notation in other cases:

expected<int, string> fun()
{

expected<int, string> ei = make_unexpected(1); // no ambiguity
ei = make_unexpected(1); // no ambiguity
// ...
return make_unexpected(1); // no ambiguity

}

If the typeless function does not work for you, you can always use the following construct, although at the
expense of invoking a (possibly elided) move constructor:

expected<int, expected<int, string>> eei =
expected<int, string>{make_unexpected(1)}; // valued

expected<int, expected<int, string>> eej =
expected<int, expected<int, string>>{make_unexpected(1)}; // unexpected

void fun(expected<int, string>);
void fun(expected<int,int>);

fun(expected<int, string>{make_unexpected(1)}); // unambiguous

11

5.3.5 Handling initializer_list

5.4 Observers
In order to be as efficient as possible, this proposal includes observers with narrow and wide contracts. Thus,
the value() function has a wide contract. If the expected object doesn’t contains a value an exception is throw.
However, when the user know that the expected object is valid, the use of operator* would be more appropriated.

5.4.1 Explicit conversion to bool

The same rational described in [?] for optional<T> applies to expected<E,T> and so, the following example would
combine initialization and checking for been valued in a condition.

if (expected<exception_ptr, char> ch = readNextChar()) {
// ...

}

5.4.2 Accessing the contained value

Even if expected<E,T> has not been used in practice for a while as Boost.Optional, we consider that following
the same interface that std::experimental::optional<T> makes the C++ standard library more homogeneous.

The same rational described in [?] for optional<T> applies to expected<E,T>.

5.4.3 Dereference operator

It was chosen to use indirection operator because, along with explicit conversion to bool, it is a very common
pattern for accessing a value that might not be there:

if (p) use(*p);

This pattern is used for all sort of pointers (smart or dumb), optional and it clearly indicates the fact that
the value may be missing and that we return a reference rather than a value. The indirection operator has risen
some objections because it may incorrectly imply that expected and optional are a (possibly smart) pointer, and
thus provides shallow copy and comparison semantics. All library components so far use indirection operator
to return an object that is not part of the pointer’s/iterator’s value. In contrast, expected as optional indirects
to the part of its own state. We do not consider it a problem in the design; it is more like an unprecedented
usage of indirection operator. We believe that the cost of potential confusion is overweighed by the benefit of
an easy to grasp and intuitive interface for accessing the contained value.

We do not think that providing an implicit conversion to T would be a good choice. First, it would require
different way of checking for the empty state; and second, such implicit conversion is not perfect and still requires
other means of accessing the contained value if we want to call a member function on it.

Using the indirection operator for a object that doesn’t contains a value is an undefined behavior. This
behavior offers maximum runtime performance.

5.4.4 Function value

In addition to the indirection operator, we propose the member function value as in [?] that returns a reference
to the contained value if one exists or throws an exception otherwise:

void interact() {
std::string s;
cout << "enter number ";
cin >> s;
expected<exception_ptr,int> ei = str2int(s);

try {
process_int(ei.value());

}
catch(bad_expected_access const&) {

cout << "this was not a number";
}

}

The exception thrown depend on the expected error type. By default it throws bad_expected_access<E>
(derived from logic_error) which will contain the stored error. In the case expected<exception_ptr>, it thows
the exception stored on the exception_ptr.

12

This function can be implemented easily using the bool conversion and the dereference operator as a non
member function

template <class E, class T>
contexpr T const& value(expected<E,T> const& e)
{

if(e) return *e;
else throw bad_expected_access(e.error());

}
template <class E, class T>
contexpr T & value(expected<E,T>& e)
{

if(e) return *e;
else throw bad_expected_access(e.error());

}
template <class T>
contexpr T const& value(expected<exception_ptr,T> const& e)
{

if(e) return *e;
else rethrow_exception(e.error());

}
template <class T>
contexpr T & value(expected<exception_ptr,T>& e)
{

if(e) return *e;
else rethrow_exception(e.error());

}

The advantage is the user could overload the function for other errors, as any, variant<E1,, En>. The
liability is that free functions introduce a new name on the std namespace. Adding it to a specific namespace
could solve this issue, but finding a good name is no so simple.

bad_expected_access<E> and bad_optional_access could inherit both from a bad_access exception derived
from logic_error, but this is not proposed.

5.4.5 Getting the contained value on the context of a continuation

5.4.6 Accessing the contained error

Usually the access to the contained error is done once we know that the expected object has no value. This is
why the error() function has a narrow contract, it works only if (! *this).

expected<errc,int> getIntOrZero(istream_range& r);
auto r = getInt(); // won’t throw
if (! r && r.error() == errc::empty_stream) {

return 0;
}
return r;

}

5.4.7 Conversion to the unexpected value

As the error() function the get_unexpected() works only if the expected object has no value. It is used to
propagate errors.

expected<errc, pair<int, int>> getIntRange(istream_range& r) {
auto f = getInt(r);
if (! f) return f.get_unexpected();

auto m = matchedString("..", r);
if (! m) return m.get_unexpected();

auto l = getInt(r);
if (! l) return l.get_unexpected();

return std::make_pair(*f, *l);
}

It is not really necessary as the line

13

return f.get_unexpected();

can be replaced by
return make_unexpected(f.error());

or even
return expected<errc, pair<int, int>>{unexpect, f.error()};

However, the function is provided for symmetry purpose. Implicit conversion from unexpected<E> to expected<E,T>
and explicit conversion from expected<E,T> to unexpected<E>.

5.4.8 Function has_exception

[?] Expected class has a hasException<E> function that checks if the expected object has a stored exception
that derived from E. This function has a sense only when the error parameter is a exception type erased as
std::exception_ptr that contains any exception. This function is useful when the user don’t needs to get more
information than the type of the stored exception.

expected<exception_ptr,int> getIntOrZero(istream_range& r) {
auto r = getInt(); // won’t throw
if (r.has_exception<EmptyStream>() {

return 0;
}
return r;

}

5.4.9 Function catch_exception

When the user wants to retrieve the whole information on the stored exception the function catch_exception
can be used instead.

expected<exception_ptr,int> getIntOrZero(istream_range& r)
{

return getInt().
catch_exception<NotANumber>([](auto& ex) // (1)
{ // has complete access to the stored exception

}); // try to recover
}

catch_exception<E> call to the function parameter if the expected instance has no value and the stored
exception match the type.

5.4.10 Function value_or

This function template returns a value stored by the expected object if it is valued, and if not, it falls back to
the default value specified in the second argument. This method for specifying default values on the fly rather
than tying the default values to the type is based on the observation that different contexts or usages require
different default values for the same type. For instance the default value for int can be 0 or -1. The callee
might not know what value the caller considers special, so it returns the lack of the requested value explicitly.
The caller may be better suited to make the choice what special value to use.

expected<exception_ptr,int> queryDB(std::string);
void setPieceCount(int);
void setMaxCount(int);

setPieceCount(queryDB("select piece_count from ...").value_or(0));
setMaxCount(queryDB("select max_count from ...").value_or(numeric_limits<int>::max()));

The decision to provide this function is controversial itself. As pointed out by Robert Ramey, the goal of
the optional is to make the lack of the value explicit. Its syntax forces two control paths; therefore we will
typically see an if-statement (or similar branching instruction) wherever expected is used. This is considered
an improvement in correctness. On the other hand, using the default value appears to conflict with the above
idea. One other argument against providing it is that in many cases you can use a ternary conditional operator
instead:

14

auto&& cnt = queryDB("select piece_count from ...");
setPieceCount(cnt ? *cnt : 0);

auto&& max = queryDB("select max_count from ...");
setMaxCount(max ? std::move(*max) : numeric_limits<int>::max());

However, in case expected objects are returned by value and immediately consumed, the ternary operator
syntax requires introducing an lvalue. This requires more typing and explicit move. This in turn makes the
code less safe because a moved-from lvalue is still accessible and open for inadvertent misuse.

There are reasons to make it a free-standing function. (1) It can be implemented by using only the public
interface of optional. (2) This function template could be equally well be applied to any type satisfying the
requirements of NullableProxy. In this proposal, function value_or is defined as a member function. Making a
premature generalization would risk standardizing a function with suboptimal performance/utility. While we
know what detailed semantics (e.g., the return type) value_or should have for expected, we cannot claim to
know the ideal semantics for any NullableProxy. Also, it is not clear to us if this convenience function is equally
useful for pointers, as it is for optional objects. By making value_or a member function we leave the room for
this name in namespace std for a possible future generalization.

The second argument in the function template’s signature is not T but any type convertible to T:
template <class T, class E, class V>

typename T expected<E,T>::value_or(V&& v) const&;
template <class T, class E, class V>

typename T expected<E,T>::value_or(V&& v) &&;

This allows for a certain run-time optimization. In the following example:
expected<int, string> ex{"cat"};
string ans = ex.value_or("dog");

Because the expected object is valued, we do not need the fallback value and therefore to convert the string literal "dog" into type \cpp{string}.

It has been argued that the function should return by constant reference rather than value, which would avoid copy overhead in certain situations:

\begin{lstlisting}
void observe(const X& x);

expected<exception_ptr,X> ex { /∗ ... ∗/ };
observe(ex.value_or(X{args})); // unnecessary copy

However, the benefit of the function value_or is only visible when the optional object is provided as a
temporary (without the name); otherwise, a ternary operator is equally useful:

expected<exception_ptr,X> ex { /∗ ... ∗/ };
observe(ox ? *ek : X{args}); // no copy

Also, returning by reference would be likely to render a dangling reference, in case the expected object is
invalid, because the second argument is typically a temporary:

expected<exception_ptr,X> ex {};
auto&& x = ex.value_or(X{args});
cout << x; // x is dangling!

There is also one practical problem with returning a reference. The function takes two arguments by
reference: the expected object and the default value. It can happen that one is deduced as lvalue reference and
the other as rvalue reference. In such case we would not know what kind of reference to return. Returning
lvalue reference might prevent move optimization; returning an rvalue reference might cause an unsafe move
from lvalue. By returning by value we avoid these problems by requiring one unnecessary move in some cases.

We also do not want to return a constant lvalue reference because that would prevent a copy elision in cases
where optional object is returned by value.

As for std::experimental::optional<T> the function expected<E,T>::value_or<V> could return type decay_t<common_type_t<T, V>
rather than T. This would avoid certain problems, such as loss of accuracy on arithmetic types:

// not proposed
expected<E,int> op = /∗ ... ∗/;
long gl = /∗ ... ∗/;

auto lossless = op.value_or(gl); // lossless deduced as long rather than int

15

However, to be alined with std::experimental::optional<T> we do not propose it at this time.
Together with function value, value_or makes a set of similarly called functions for accessing the contained

value that do not cause an undefined behavior when invoked on a invalid expected (at the expense of runtime
overhead). They differ though, in the return type: one returns a value, the other a reference.

5.4.11 Relational operators

As optional, one of the design goals of expected is that objects of type expected<E,T> should be valid elements
in STL containers and usable with STL algorithms (at least if objects of type T and E are). Equality comparison
is essential for expected<E,T> to model concept Regular. C++ does not have concepts, but being regular is
still essential for the type to be effectively used with STL. Ordering is essential if we want to store expected
values in ordered associative containers. A number of ways of including the unexpected state in comparisons
have been suggested. The ones proposed, have been crafted such that the axioms of equivalence and strict weak
ordering are preserved: unexpected values stored in expected<E,T> are simply treated as additional values that
are always different from T; these values are always compared as less than any value of T when stored in an
expected object.

The main issue is how to compare the unexpected values between them. operator==() is defined for
exception_ptr, using shallow semantics but there is no order between two exception_ptr.

template <class T, class E>
constexpr bool operator<(const expected<E,T>& x, const expected<E,T>& y)
{

return (x)
? (y) ? *x < *y : false
: (y) ? true : ?<?;

}

template <class T, class E>
constexpr bool operator==(const expected<E,T>& x, const expected<E,T>& y)
{

return (x)
? (y) ? *x == *y : false
: (y) ? false : ?==?;

}

If we follow the optional<T> semantics, two unexpected values should always be equal and do not compare.
That is, ?<? should be substituted by false and ?==? by true. However considering all the unexpected value
equals seems counterintuitive.

The alternative consists in forwarding the request to the respective unexpected_type<E> relational operators.
That is, ?<? should be substituted by x.get_unexpected() < y.get_unexpected() and ?==? by x.get_unexpected() == y.get_unexpected().

But how to define the relational operators for unexpected_type<E>? We can forward the request to the
respective E relational operators when E defines these operators and follows the optional<T> semantics otherwise.

The case of unexpected_type<std::exception_ptr> could follow the optional<T> semantics as the shallow
comparison is not very useful.

This limitation is one of the main motivations for having a user defined type with strict weak ordering. E.g.
if the user know the exact types of the exceptions that can be thrown E1, ..., En, the error parameter could be
some kind of variant<E1, ... En> for which a strict weak ordering can be defined. If the user would like to
take care of unknown exceptions something like optional<variant<E1, ... En>> would be a quite appropriated
model.

expected<int, unsigned> e0{0};
expected<int, unsigned> e1{1};
expected<int, unsigned> eN{unexpect, -1};

assert (eN < e0);
assert (e0 < e1);
assert (!(eN < eN));
assert (!(e1 < e1));

assert (eN != e0);
assert (e0 != e1);
assert (eN == eN);
assert (e0 == e0);

Unexpected values could have been as well considered greater than any value of T. The choice is a great
degree arbitrary. We choose to stick to what std::optional does.

16

Given that both unexpected_type<E> and T are implicitly convertible to expected<E,T>, this implies the
existence and semantics of mixed comparison between expected<E,T> and T, as well as between expected<E,T>
and unexpected_type<E>:

assert (eN == make_unexpected(1));
assert (e0 != make_unexpected(1));
assert (eN != 1);
assert (e1 == 1);

assert (eN < 1);
assert (e0 > make_unexpected(1));

Although it is difficult to imagine any practical use case of ordering relation between expected<E,T> and
unexpected_type<E>, we still provide it for completness sake.

The mixed relational operators, especially these representing order, between expected<E,T> and T have been
accused of being dangerous. In code examples like the following, it may be unclear if the author did not really
intend to compare two T’s.

auto count = get_expected_count();
if (count < 20) {} // or did you mean: *count < 20 ?
if (! count || *count < 20) {} // verbose, but unambiguous

Given that expected<E,T> is comparable and implicitly constructible from T, the mixed comparison is there
already. We would have to artificially create the mixed overloads only for them to cause controlled compilation
errors. A consistent approach to prohibiting mixed relational operators would be to also prohibit the conversion
from T or to also prohibit homogenous relational operators for expected<E,T> ; we do not want to do either, for
other reasons discussed in this proposal. Also, mixed relational operations are available in std::optional<T>
and we want to maintain the same behavior for expected<nullopt_t,T> and optional<T>. Mixed operators come
as something natural when we consider the model "T with additional values".

For completeness sake, we also provide ordering relations between expected<E,T> and unexpected_type<E>,
even though we see no practical use case for them:

bool test(expected<unsigned, int> e)
{

assert (e >= make_unexpected(1));
assert (!(e < make_unexpected(1)));
assert (make_unexpected(1) <= e);
return (e > make_unexpected(1));

}

There exist two ways of implementing operator>() for expected objects: use T::operator>() or use expected<E,T>::operator<()
In case T::operator> and T::operator< are defined consistently, both above implementations are equivalent.

If the two operators are not consistent, the choice of implementation makes a difference.
For relational operations, we choose to implement all in terms of expected<E,T>::operator<() to be consistent

with the choice taken for std::optional.
The same applies to the relational operators for unexpected_type<E> .

5.5 Modifiers
5.5.1 Reseting the value

Assigning the value of type T to expected<E,T> object results in doing two different things based on whether
the expected object has a value or not. If expected object has a value, the contained value is assigned a new
value. If expected object has an unexpected value, the destructor of the unexpected value is called and then
it becomes valued using T’s copy/move constructor. This behavior is based on a silent assumption that T’s
copy/move constructor is copying a value in a similar way to copy/move assignment. A similar logic applies to
expected<E,T>’s copy/move assignment, although the situation here is more complicated because we have two
valued/unexpected states to be considered. This means that expected<E,T>’s assignment does not work (does
not compile) if T is not assignable:

expected<int,const int> ei = 1; // ok
ei = 2; // error
ei = ei; // error
ei = make_unexpected(1); // ok

There is an option to reset the value of optional object without resorting to T’s assignment:

17

expected<int, const int> ej = 1; // ok
ej.emplace(2); // ok

Function emplace disengages the optional object if it is engaged, and then just engages the object anew
by copy-constructing the contained value. It is similar to assignment, except that it is guaranteed not to use
T’s assignment and provides only a basic exception safety guarantee. In contrast, assignment may provide a
stronger guarantee if T’s assignment does.

To sumarize, this proposal offers three ways of assigning a new contained value to an optional object:
optional<int> e;
e = make_optional(1); // copy/move assignment
e = 1; // assignment from T
e.emplace(1); // emplacement

The first form of assignment is required to make optional a regular object, useable in STL. We need the
second form in order to reflect the fact that optional<T> is a wrapper for T and hence it should behave as T as
much as possible. Also, when optional<T> is viewed as T with one additional value, we want the values of T to
be directly assignable to optional<T>. In addition, we need the second form to allow the interoperability with
function std::tie as shown above. The third option is required to be able to reset an optional non-assignable T.

5.5.2 Tag in_place

This proposal makes use of the ’in-place’ tag defined in [?]. This proposal provides the same kind of ’in-place’
constructor that forwards (perfectly) the arguments provided to expected’s constructor into the constructor of T.
In order to trigger this constructor one has to use the tag struct in_place. We need the extra tag to disambiguate
certain situations, like calling expected’s default constructor and requesting T’s default construction:

expected<int,Big> eb{in_place, "1"}; // calls Big"1" in place (no moving)
expected<int,Big> ec{in_place}; // calls Big in place (no moving)
expected<int,Big> ed{}; // creates a unexpected expected

5.5.3 Tag unexpect

This proposal provides an ’unpect’ constructor that forwards (perfectly) the arguments provided to expected’s
constructor into the constructor of E. In order to trigger this constructor one has to use the tag struct unexpect.
We need the extra tag to disambiguate certain situations, like calling expected’s default constructor and re-
questing T’s default construction:

expected<int, Big> eb{unexpect, "1"}; // calls Big"1" in place (no moving)
expected<int, Big> ec{unexpect}; // calls Big in place (no moving)

In order to make the tag uniform an additional ’expect’ constructor could be provided but this proposal
doesn’t propose it.

5.5.4 Requirements

The expected<std::exception_ptr,T> specialization introduces some operations as has_exception and catch_exception.
Should we name the classes differently? For example, exception_or<T> and error_or<E,T>.

5.5.5 Requirements on T and E

Class template expected imposes little requirements on T and E: they have to be complete object type satisfying
the requirements of Destructible. It is the particular operations on expected<E,T> that impose requirements on
T and E: expected<E,T>’s move constructor requires that T and E are MoveConstructible, expected<E,T>’s copy
constructor requires that T and E are CopyConstructible, and so on. This is because expected<E,T> is a wrapper
for T or E: it should resemble T as much as possible. If T is EqualityComparable then (and only then) we expect
expected<E,T> to be EqualityComparable.

5.5.6 Expected references

This proposal doesn’t include expected references as [?] doesn’t includes optional references neither.

5.5.7 Expected void

While it could seem weird to instantiate optional with void, it has more sense for expected as expected conveys
in addition, as future<T>, an error code, expected<E,void>.

18

5.5.8 NullableProxy

As optional objects, the primary purpose of expected object is to check if they contain a value and if so, to
provide access to this value. expected<E,T> could be seen also as a NullableProxy.

5.6 Literals
5.6.1 Making expected a literal type

We propose that expected<E,T> be a literal type for trivially destructible T’s and E’s.
constexpr expected<int, int> ei{5};
static_assert(ei, ""); // ok
static_assert(ei == ei, ""); // ok
int array[*ei]; // ok: array of size 5

Making expected<E,T> a literal-type in general is impossible: the destructor cannot be trivial because it has
to execute an operation that can be conceptually described as:

expected() if (valid()) destroy_contained_value(); else destroy_contained_error();
It is still possible to make the destructor trivial for T’s and E’s which provide a trivial destructor themselves,

and we know an efficient implementation of such expected<E,T> with compile-time interface ? except for copy
constructor and move constructor ? is possible. Therefore we propose that for trivially destructible T’s and
E’s all expected<E,T>’s constructors, except for move and copy constructors, as well as observer functions are
constexpr. The sketch of reference implementation is provided in [?].

We need to make a similar exception for operator-> for types with overloaded operator&. The common
pattern in the library is to use function addressof to avoid the surprise of overloaded operator&. However, we
know of no way to implement constexpr version of function template addressof. The best approach we can take
is to require that for normal types the non-overloaded (and constexpr) operator& is used to take the address of
the contained value, and for the tricky types, implementations can use the normal (non-constexpr) addressof.

5.6.2 Moved from state

When a valued expected object is moved from (i.e., when it is the source object of move constructor or move
assignment) its state does not change. When a valued object is moved from, we move the contained value, but
leave the expected object valued. A moved-from contained value is still valid (although possibly not specified),
so it is fine to consider such expected object valued. An alternative approach would be to destroy the contained
value and make the moved-from optional object unvalid. However, we do not propose this for performance
reasons.

In contexts, like returning by value, where you need to call the destructor the second after the move, it
does not matter, but in cases where you request the move explicitly and intend to assign a new value in the
next step, and if T does not provide an efficient move, the chosen approach saves an unnecessary destructor and
constructor call:

expected<errc,array<Big, 1000>> eo = ... // array doesn’t have efficient move
ep = std::move(eo);
eo = std::move(tmp);

The following is an even more compelling reason. In this proposal expected<int,int> is allowed to be imple-
mented as a TriviallyCopyable type. Therefore, the copy constructor of type std::array<expected<int,int>, 1000>
can be implemented using memcpy. With the additional requirement that expected’s move constructor should
not be trivial, we would be preventing the described optimization.

The fact that the moved-from expected is not invalid may look "uncomfortable" at first, but this is an invalid
expectation. The requirements of library components expressed in 17.6.5.15 (moved-from state of library types)
only require that moved-from objects are in a valid but unspecified state. We do not need to guarantee anything
above this minimum.

5.7 Other
5.7.1 IO operations

The proposed interface for expected values does not contain IO operations: operator<< and operator>>. While
we believe that they would be a useful addition to the interface of expected objects, we also observe that there are
some technical obstacles in providing them, and we choose not to propose them at this time. Library components
like optional, containers, pairs, tuples face the same issue. At present IO operations are not provided for these
types. Our preference for expected is to provide an IO solution compatible with this for optional, containers,
pairs and tuples, therefore at this point we refrain from proposing a solution for expected alone.

19

5.7.2 Function make_expected

5.8 Monad-like operations
[?] propose some improvements to std::future<T> that can be adapted to expected<E,T> naturally.

5.8.1 When ready

[?] provides a future<T>.then() function that accepts a continuation having the future object as parameter.
This continuation function is called when the future becomes ready. Been expected always ready this function
is less useful. The single role would be to adapt the result of the continuation to the expected.

5.8.2 When valued/unexpected

In addition the .then() function that accepts a continuation having the expected object as parameter, the
proposal includes two separated functions, one .mbind() that applies when the expected object is valued and
accepts a continuation having the underlying value_type as parameter. The other .catch_error() applies when
the expected object is not valid and is used to try to recover from the error.

5.8.3 Continuation adaptors

An alternative to these specific functions could be to use the .then() function and have some adaptor if_valued
and if_unexpected that do the adaptation.

f.then(if_valued([](T v) {...}));

f.then(if_unexpected([](E e) {...}));

TBoost.Expected [?] provides such a .then continuation adaptors, but this proposal doesn’t include them.

5.8.4 value_or_call

As reported in [?] one convenience function has been suggested. Sometimes the default value is not given, and
computing it takes some time. We only want to compute it, when we know the optional object is disengaged:

expected<exception_ptr,int> ei = /∗ ... ∗/;

if (ei) {
use(*ei);

}
else {

int i = painfully_compute_default();
use(i);

}

The solution to that situation would be another convenience function which rather than taking a default
value takes a callable object that is capable of computing a default value if needed:

use(ei.value_or_call(&painfully_compute_default));
// or
use(ei.value_or_call([&]{return painfully_compute_default();});

This is quite close to the context of use of catch_error, but the function called has no parameter. As there
is an alternative using generic lambdas this proposal doesn’t propose neither this function.

ei.catch_error([](auto){ return painfully_compute_default();}).mbind(use);

5.8.5 When all ready

[?] includes when_all()/when_any()//when_any_swaped() functions to group futures on a new specific future that
will be ready under different circumstances. As expected<E,T> is always ready, these functions have no sense.
If provided the result and the behavior would be the same for both, just group all the expected.

20

5.8.6 When all valued

However, there is yet a need to apply a function when all the expected are valued. The free function fmap()
takes a variadic continuation and a variadic number of expected parameters. The type and number of the
parameters must be compatible with the continuation arguments.

expected<exception_ptr,int> sumFirstAndSecond5(istream_range& r)
{

return fmap(plus, getInt(r), getInt(r));
}

An alternative to this specific function if when_all is provided, could be to use the .then() function and have
some adaptor if_all_valued that do the adaptation.

expected<exception_ptr,int> sumFirstAndSecond5(istream_range& r)
{

return when_all(getInt(r), getInt(r)).then(if_all_valued([](int i, int j) {...}));
}

5.8.7 When any valued

The authors don’t have a concrete use case for a function that would be applied if any of the expected has a
value other than looking for non-determinism.

5.8.8 expected<E, expected<E,T>>

5.8.9 Function unwrap

In some scenarios, you might want to create an expected that returns another expected, resulting in nested
expected. It is possible to write simple code to unwrap the outer expected and retrieve the nested expected and
its result with the current interface as in

template <class T, class E>
expected<E,T> unwrap<expected<E, expected<E,T>> ee) {

if (ee) return *ee;
return ee.get_unexpected();

}
template <class T, class E>
expected<E,T> unwrap<expected<E,T>> e) {

return e;
}

We could add such a function to the standard, either as a free function or as a member function. The
authors propose to add it as a member function to be inline with [?].

6 Related types

6.1 Variant
expected<E,T> can be seen as a specialization of boost::variant<unexpected<E>,T> which gives a specific intent
to its second parameter, that is, it represent the type of the expected contained value. This specificity allows
to provide a pointer like interface, as it is the case for std::experimental::optional<T>. Even if the standard
included a class variant<T,E>, the interface provided by expected<E,T> is more specific and closer to what the
user could expect as the result type of a function. In addition, expected<E,T> doesn’t intend to be used to define
recursive data as boost::variant<> does.

The table 2 presents a brief comparison between boost::variant<T, E> and expected<E,T>.

6.2 Optional
We can see expected<E,T> as an std::experimental::optional<T> that collapse all the values of E to nullopt.

We can convert an expected<E,T> to an optional<T> with the possible loss of information.
template <class T>
optional<T> make_optional(expected<E,T> v) {

if (v) return make_optional(*v);
else nullopt;

}

21

boost::variant<unexpected<E>,
T>

expected<E,T>

never-empty warranty yes yes

accepts is_same<T,E> no yes

swap yes yes

factories no make_expected / make_unexpected

hash yes yes

value_type no yes

default constructor yes (if T is default constructible) yes (if T is default constructible)

observers boost::get<T> and boost::get<E> pointer-like / value / error / value_or
/ value_or_throw

continuations apply_visitor then/mbind/catch_error

Table 2: Comparison between variant and expected.

We can convert an optional<T> to an expected<exception_ptr,T> without knowledge of the root cause.
template <class T>
expected<exception_ptr,T> make_expected(optional<T> v) {

if (v) return make_expected(*v);
else make_unexpected(conversion_from_nullopt());

}

6.3 Promise and Future
We can see expected<exception_ptr,T> as a always ready future<T>. While promise<>/future<> focuses on
inter-thread asynchronous communication, excepted<E,T> focus on eager and synchronous computations. We
can move a ready future<T> to an expected<exception_ptr,T> with no loss of information.

template <class T>
expected<exception_ptr,T> make_expected(future<T>&& f) {

assert (f.ready() && "future not ready");
try {

return f.get();
} catch (...) {

return make_unexpected_from_exception();
}

}

We can create also a future<T> from an expected<exception_ptr,T>.
template <class T>
future<T> make_ready_future(expected<exception_ptr,T> e) {

if (e)
return make_ready_future(*e);

else
return make_unexpected_future<T>(e.error());

}

where
template <class T, class E>
constexpr future<T> make_unexpected_future(E e) {

promise<T> p;
future<T> f = p.get_future();
p.set_exception(e);
return move(f);

}

We can combine them as follows

22

optional expected promise/future

specific null value yes no no

relational operators yes yes no

swap yes yes yes

factories make_optional / nullopt make_expected /
make_unexpected

make_ready_future /
(make_exceptional, see
[?])

hash yes yes yes

value_type yes yes no / (yes, see [?]).

default constructor yes yes (if T is default
constructible)

yes

allocators no no yes

emplace yes yes no

bool conversion yes yes no

state bool() bool() valid / ready /
(has_value, see [?])

observers pointer-like / value /
value_or

pointer-like / value /
error / value_or /
value_or_throw

get /
(get_exception_ptr, see
[?])

visitation no then/mbind/catch_error then / (next/recover see
[?])

grouping n/a n/a when_all / when_any

apply no mbind no

Table 3: Comparison between optional, expected and promise/future.

fut.then([](future<int> f) {
return make_ready_future(

make_expected(f).mbind([](i){ ... }).catch_error(...));
});

6.4 Expected monad
As for the future<T> proposal, expected<E,T> provides also a way to visit the stored values. future<T> provides
a then() function that accepts a continuation having the future<T> as parameter. The synchronous nature of
expected makes it easier to use two functions, one to manage with the case expected has a value and one to try
to recover otherwise. This is more in line with the monad interface, as any function having a T as parameter
can be used as parameter of the apply function, no need to have a expected<E,T>. This make it easier to reuse
functions.

• expected<E,T>::mbind()/expected<E,T>::catch_error() are the counterpart of future<T>.then()

• expected<E,T>::unwrap() is the counterpart of future<T>.unwrap()

• expected<E,T>::operator bool() is the counterpart of future<T>.has_value()

6.5 Comparison between optional, expected and future
The table 3 presents a brief comparison between optional<T>, expected<E,T> and promise<T>/future<T>.

23

7 Open questions

7.1 Allocator support
As optional<T>, expected<E,T> does not allocate memory. So it can do without allocators. However, it can be
useful in compound types like:

typedef vector< expected<erroc, vector<int, MyAlloc>>, MyAlloc>; MyVec;
MyVec v{ v2, MyAlloc{} };

One could expect that the allocator argument is forwarded in this constructor call to the nested vectors that
use the same allocator. Allocator support would enable this. std::tuple offers this functionality.

7.2 Which exception throw when the user try to get the expected value but there
is none?

It has been suggested to let the user decide the Exception that would be throw when the user try to get the
expected value but there is none, as third parameter.

While there is no major complexity doing it, as it just needs a third parameter that could default to the
appropriated class,

template <class T, class Error, class Exception = bad_expected_access>
struct expected;

the authors consider that this is not really needed and that this parameter should not really be part of the
type. In addition OPTIONAL

The user can use value_or_throw() as
std::experimental::expected<std::error_code, int> f();
std::experimental::expected<std::error_code, int> e = f();
auto i = e.value_or_throw<std::system_error>();

The user can also wrap the proposed class in its own expected class
template <class T, class Error=std::error_code, class Exception=std::system_error>
struct MyExpected {

expected <T,E> v;
MyExpected(expected <T,E> v) : v(v) {}
T value() {

if (e) return v.value();
else throw Exception(v.error());

}
...

};

and use it as
std::experimental::expected<std::error_code, int> f();
MyExpected<int> e = f();
auto i = e.value(); // std::system_error throw if not valid

A class like this one could be added to the standard, but this proposal doesn’t request it.
An alternative could be to add a specialization on a error class that gives the storage and the exception to

thrown.
template <class Error, class Exception>

struct error_exception {
typedef Error error_type;
typedef Exception exception_type;

};

std::experimental::expected<std::error_exception<std::error_code, std::system_error>, T> e = make_unexpected(err);
e.value(); // will thow std::system_error(err);

24

7.3 About expected<T, ErrorCode, Exception>

It has been suggested also to extend the design into something that contains

• a T, or

• an error code, or

• a exception_ptr

Again there is no major difficulty to implement it, but instead of having one variation point we have two,
that is, is there a value, and if not, if is there an exception_ptr. While this would need only an extra test on the
exceptional case, the authors think that it is not worth doing it as all the copy/move/swap operations would
be less efficient.

8 Proposed Wording
The proposed changes are expressed as edits to N3908, the Working Draft - C++ Extensions for Library Fun-
damentals [?]. The wording has been adapted from the section "Optional objects".

Insert a new section.

X.Y Unexpected objects [unexpected]

X.Y.1 In general [unexpected.general]

This subclause describes class template unexpected_type that wraps objects intended as unexpected. This
wrapped unexpected object is used to be implicitly convertible to other object.

X.Y.2 Header <experimental/unexpected> synopsis [unexpected.synop]

namespace std {
namespace experimental {
inline namespace fundamentals_v2 {

// X.Y.3, Unexpected object type
template <class E>
struct unexpected_type;
// X.Y.4, Unexpected exception_ptr specialization
template <>
struct unexpected_type<exception_ptr>;

// X.Y.5, Unexpected factories
template <class E>
constexpr unexpected_type<decay_t<E>> make_unexpected(E&& v);
unexpected_type<std::exception_ptr> make_unexpected_from_current_exception();

}}}

A program that necessitates the instantiation of template unexpected for a reference type or void is ill-formed.

X.Y.3 Unexpected object type [unexpected.object]

template <class E=std::exception_ptr>
class unexpected_type {
public:

unexpected_type() = delete;
constexpr explicit unexpected_type(E const&);
constexpr explicit unexpected_type(E&&);
constexpr E const& value() const;

};

constexpr explicit unexpected_type(E const&);

Effects:

25

Build an unexpected by copying the parameter to the internal storage.

constexpr explicit unexpected_type(E &&);

Effects:
Build an unexpected by moving the parameter to the internal storage.

constexpr E const& value() const;

Returns:
A const reference to the stored error.

X.Y.4 Unexpected exception_ptr specialization [unexpected.exception_ptr]

template <>
class unexpected_type<std::exception_ptr> {
public:

unexpected_type() = delete;
explicit unexpected_type(std::exception_ptr const&);
explicit unexpected_type(std::exception_ptr&&);
template <class E>

explicit unexpected_type(E);
std::exception_ptr const &value() const;

};

constexpr explicit unexpected_type(exception_ptr const&);

Effects:
Build an unexpected by copying the parameter to the internal storage.

constexpr explicit unexpected_type(exception_ptr &&);

Effects:
Build an unexpected by moving the parameter to the internal storage.

constexpr explicit unexpected_type(E e);

Effects:
Build an unexpected storing the result of make_exception_ptr(e).

constexpr exception_ptr const& value() const;

Returns:
A const reference to the stored exception_ptr.

X.Y.5 Factories [unexpected.factories]

template <class E>
constexpr unexpected_type<decay_t<E>> make_unexpected(E&& v);

Returns:
unexpected<decay_t<E>>(v).

constexpr unexpected_type<std::exception_ptr> make_unexpected_from_current_exception();

Returns:
unexpected<std::exception_ptr>(std::current_exception()).

Insert a new section.

X.Y Expected objects [expected]

X.Y.6 In general [expected.general]

26

This subclause describes class template expected that represents expected objects. An expected object for
object type T is an object that contains the storage for another object and manages the lifetime of this contained
object T, alternatively it could contain the storage for another unexpected object E. The contained object may
not be initialized after the expected object has been initialized, and may not be destroyed before the expected
object has been destroyed. The initialization state of the contained object is tracked by the expected object.

X.Y.7 Header <experimental/expected> synopsis [expected.synop]

namespace std {
namespace experimental {
inline namespace fundamentals_v2 {

// ??, holder class used as default.
class holder;
// X.Y.9, expected for object types
template <class E= exception_ptr, class T=holder>
class expected;
// X.Y.11, Specialization for void.
template <class E>
class expected<E, void>;
// X.Y.10, Specialization of expected as a meta-function : T-> expected<E,T>.
template <class E>
class expected<E, holder>;

// X.Y.12, unexpect tag
struct unexpect_t{};
constexpr unexpet_t unexpect{};

// X.Y.13, class bad_expected_access
class bad_expected_access;

// X.Y.14, class expected_default_constructed
class expected_default_constructed;

// X.Y.15, Expected relational operators
template <class T, class E>

constexpr bool operator==(const expected<E,T>&, const expected<E,T>&);
template <class T, class E>

constexpr bool operator!=(const expected<E,T>&, const expected<E,T>&);
template <class T, class E>

constexpr bool operator<(const expected<E,T>&, const expected<E,T>&);
template <class T, class E>

constexpr bool operator>(const expected<E,T>&, const expected<E,T>&);
template <class T, class E>

constexpr bool operator<=(const expected<E,T>&, const expected<E,T>&);
template <class T, class E>

constexpr bool operator>=(const expected<E,T>&, const expected<E,T>&);

// X.Y.16, Comparison with T
template <class T, class E> constexpr bool operator==(const expected<E,T>&, const T&);
template <class T, class E> constexpr bool operator==(const T&, const expected<E,T>&);
template <class T, class E> constexpr bool operator!=(const expected<E,T>&, const T&);
template <class T, class E> constexpr bool operator!=(const T&, const expected<E,T>&);
template <class T, class E> constexpr bool operator<(const expected<E,T>&, const T&);
template <class T, class E> constexpr bool operator<(const T&, const expected<E,T>&);
template <class T, class E> constexpr bool operator<=(const expected<E,T>&, const T&);
template <class T, class E> constexpr bool operator<=(const T&, const expected<E,T>&);
template <class T, class E> constexpr bool operator>(const expected<E,T>&, const T&);
template <class T, class E> constexpr bool operator>(const T&, const expected<E,T>&);
template <class T, class E> constexpr bool operator>=(const expected<E,T>&, const T&);
template <class T, class E> constexpr bool operator>=(const T&, const expected<E,T>&);

// X.Y.17, Comparison with unexpected_type<E>
template <class T, class E> constexpr bool operator==(const expected<E,T>&, const unexpected<E>&);
template <class T, class E> constexpr bool operator==(const unexpected<E>&, const expected<E,T>&);
template <class T, class E> constexpr bool operator!=(const expected<E,T>&, const unexpected<E>&);

27

template <class T, class E> constexpr bool operator!=(const unexpected<E>&, const expected<E,T>&);
template <class T, class E> constexpr bool operator<(const expected<E,T>&, const unexpected<E>&);
template <class T, class E> constexpr bool operator<(const unexpected<E>&, const expected<E,T>&);
template <class T, class E> constexpr bool operator<=(const expected<E,T>&, const unexpected<E>&);
template <class T, class E> constexpr bool operator<=(const unexpected<E>&, const expected<E,T>&);
template <class T, class E> constexpr bool operator>(const expected<E,T>&, const unexpected<E>&);
template <class T, class E> constexpr bool operator>(const unexpected<E>&, const expected<E,T>&);
template <class T, class E> constexpr bool operator>=(const expected<E,T>&, const unexpected<E>&);
template <class T, class E> constexpr bool operator>=(const unexpected<E>&, const expected<E,T>&);

// X.Y.18, Specialized algorithms
template <class T>

void swap(expected<E,T>&, expected<E,T>&) noexcept(see below);

// X.Y.19, Factories
template <class T> constexpr expected<exception_ptr, decay_t<T>> make_expected(T&& v);
template <> expected<exception_ptr, void> make_expected();
template <class E> expected<E,void> make_expected();

template <class T>
expected_type<T> make_expected_from_current_exception();
template <class T, class E>
constexpr expected<exception_ptr,T> make_expected_from_exception(E e);

template <class T>
constexpr expected<exception_ptr,T> make_expected_from_exception(std::exception_ptr v);

template <class T, class E>
constexpr expected<decay_t<E>,T> make_expected_from_error(E v);

template <class F>
constexpr typename expected<exception_ptr, typename result_type<F>::type
make_expected_from_call(F f);

// X.Y.20, hash support
template <class T> struct hash;
template <class T> struct hash<expected<E,T>>;

}}}

A program that necessitates the instantiation of template expected<E,T> with T for a reference type or for
possibly cv-qualified types in_place_t, unexpect_t or unexpected_type<E> is ill-formed.

X.Y.8 Definitions [expected.defs]

An instance of expected<E,T> is said to be valued if it contains an value of type T. An instance of
expected<E,T> is said to be unexpected if it contains an object of type E.

X.Y.9 expected for object types [expected.object]

template <class T, class E>
class expected
{
public:

typedef T value_type;
typedef E error_type;

template <class U>
struct rebind {

typedef expected<error_type, U> type;
};

// X.Y.9.1, constructors
constexpr expected() noexcept(see below);
expected(const expected&);
expected(expected&&) noexcept(see below);

28

constexpr expected(const T&);
constexpr expected(T&&);
template <class... Args>

constexpr explicit expected(in_place_t, Args&&...);
template <class U, class... Args>

constexpr explicit expected(in_place_t, initializer_list<U>, Args&&...);

constexpr expected(unexpected_type<E> const&);
template <class Err>
constexpr expected(unexpected_type<Err> const&);

// X.Y.9.2, destructor
~expected();

// X.Y.9.3, assignment
expected& operator=(const expected&);
expected& operator=(expected&&) noexcept(see below);

template <class U> expected& operator=(U&&);

expected& operator=(const unexpected_type<E>&);
expected& operator=(unexpected_type<E>&&) noexcept(see below);

template <class... Args> void emplace(Args&&...);
template <class U, class... Args>

void emplace(initializer_list<U>, Args&&...);

// X.Y.9.4, swap
void swap(expected&) noexcept(see below);

// X.Y.9.5, observers
constexpr T const* operator ->() const;
constexpr T* operator ->();

constexpr T const& operator *() const&;
constexpr T& operator *() &;
constexpr T&& operator *() &&;

constexpr explicit operator bool() const noexcept;

constexpr T const& value() const&;
constexpr T& value() &;
constexpr T&& value() &&;

constexpr E const& error() const&;
constexpr E& error() &;
constexpr E&& error() &&;

constexpr unexpected<E> get_unexpected() const;

template <typename Ex>
bool has_exception() const;

template <class U> constexpr T value_or(U&&) const&;
template <class U> T value_or(U&&) &&;

template <class G> constexpr T value_or_throw() const&;
template <class G> T value_or_throw() &&;

template constexpr ’see below’ unwrap() const&;
template ’see below’ unwrap() &&;

// X.Y.9.6, factories

template <typename Ex, typename F>

29

expected<E,T> catch_exception(F&& f);

template <typename F>
auto mbind(F&& func) const -> expected<E, decltype(func(val))>;

template <typename F>
expected<E,T> catch_error(F&& f);

template <typename F>
auto then(F&& func) const -> expected<E, decltype(func(*this))>;

private:
bool has_value; // exposition only
union
{

value_type val; // exposition only
error_type err; // exposition only

};
};

Valued instances of expected<E,T> where T and E is of object type shall contain a value of type T or a value
of type E within its own storage. This value is referred to as the contained or the unexpected value of the
expected object. Implementations are not permitted to use additional storage, such as dynamic memory, to
allocate its contained or unexpected value. The contained or unexpected value shall be allocated in a region of
the expected<E,T> storage suitably aligned for the type T and E.

Members has_value, val and err are provided for exposition only. Implementations need not provide those
members. has_value indicates whether the expected object’s contained value has been initialized (and not yet
destroyed); when has_value is true val points to the contained value, and when it is false err points to the
erroneous value.

T and E shall be an object type and shall satisfy the requirements of Destructible.

X.Y.9.1 Constructors [expected.object.ctor]

constexpr expected<E,T>::expected() noexcept(see below);

Effects:
Initializes the contained value as if direct-non-list-initializing an object of type T with the expression T().

Postconditions:
bool(*this).

Throws:
Any exception thrown by the default constructor of T.

Remarks:
The expression inside noexcept is equivalent to:
is_nothrow_default_constructible<T>::value.

Remarks:
This signature shall not participate in overload resolution unless
is_default_constructible<T>::value.

expected<E,T>::expected(const expected<E,T>& rhs);

Effects:
If bool(rhs) initializes the contained value as if direct-non-list-initializing an object of type T with the
expression *rhs.

If !bool(rhs) initializes the contained value as if direct-non-list-initializing an object of type E with the
expression rhs.error().

Postconditions:
bool(rhs) == bool(*this).

Throws:
Any exception thrown by the selected constructor of T or E.

Remarks:

30

This signature shall not participate in overload resolution unless
is_copy_constructible<T>::value and
is_copy_constructible<E>::value.

expected<E,T>::expected(expected<E,T> && rhs) noexcept(/∗see below∗/);

Effects:
If bool(rhs) initializes the contained value as if direct-non-list-initializing an object of type T with the
expression std::move(*rhs).

If !bool(rhs) initializes the contained value as if direct-non-list-initializing an object of type E with the
expression std::move(rhs.error()).

Postconditions:
bool(rhs) == bool(*this) and
bool(rhs) is unchanged.

Throws:
Any exception thrown by the selected constructor of T or E.

Remarks:
The expression inside noexcept is equivalent to:
is_nothrow_move_constructible<T>::value == trye and
is_nothrow_move_constructible<E>::value.

Remarks:
This signature shall not participate in overload resolution unless
is_move_constructible<T>::value and
is_move_constructible<E>::value.

constexpr expected<E,T>::expected(const T& v);

Effects:
Initializes the contained value as if direct-non-list-initializing an object of type T with the expression v.

Postconditions:
bool(*this).

Throws:
Any exception thrown by the selected constructor of T.

Remarks:
If T’s selected constructor is a constexpr constructor, this constructor shall be a constexpr constructor.

Remarks:
This signature shall not participate in overload resolution unless
is_copy_constructible<T>::value.

constexpr expected<E,T>::expected(T&& v);

Effects:
Initializes the contained value as if direct-non-list-initializing an object of type T with the expression
std::move(v).

Postconditions:
bool(*this).

Throws:
Any exception thrown by the selected constructor of T.

Remarks:
If T’s selected constructor is a constexpr constructor, this constructor shall be a constexpr constructor.

Remarks:
This signature shall not participate in overload resolution unless
is_move_constructible<T>::value.

template <class... Args>
constexpr explicit expected(in_place_t, Args&&... args);

Effects:

31

Initializes the contained value as if direct-non-list-initializing an object of type T with the arguments
std::forward<Args>(args)....

Postconditions:
bool(*this).

Throws:
Any exception thrown by the selected constructor of T.

Remarks:
If T’s constructor selected for the initialization is a constexpr constructor, this constructor shall be a
constexpr constructor.

Remarks:
This signature shall not participate in overload resolution unless
is_constructible<T, Args&&...>::value.

template <class U, class... Args>
constexpr explicit expected(in_place_t, initializer_list<U> il, Args&&... args);

Effects:
Initializes the contained value as if direct-non-list-initializing an object of type T with the arguments
il, std::forward<Args>(args)....

Postconditions:
bool(*this).

Throws:
Any exception thrown by the selected constructor of T.

Remarks:
The function shall not participate in overload resolution unless:
is_constructible<T, initializer_list<U>&, Args&&...>::value.

If T’s constructor selected for the initialization is a constexpr constructor, this constructor shall be a
constexpr constructor.

Remarks:
This signature shall not participate in overload resolution unless
is_constructible<T, initializer_list<U>&, Args&&...>::value.

constexpr expected<E,T>::expected(unexpected_type<E> const& e);

Effects:
Initializes the unexpected value as if direct-non-list-initializing an object of type E with the expression
e.value().

Postconditions:
! *this.

Throws:
Any exception thrown by the selected constructor of E.

Remarks:
If E’s selected constructor is a constexpr constructor, this constructor shall be a constexpr constructor.

Remarks:
This signature shall not participate in overload resolution unless
is_copy_constructible<E>::value.

constexpr expected<E,T>::expected(unexpected_type<E>&& e);

Effects:
Initializes the unexpected value as if direct-non-list-initializing an object of type E with the expression
std::move(e.value()).

Postconditions:
! *this.

Throws:
Any exception thrown by the selected constructor of E.

32

Remarks:
If E’s selected constructor is a constexpr constructor, this constructor shall be a constexpr constructor.

Remarks:
This signature shall not participate in overload resolution unless
is_move_constructible<E>::value.

X.Y.9.2 Destructor [expected.object.dtor]

expected<E,T>::~expected();

Effects:
If is_trivially_destructible<T>::value != true and bool(*this), calls val->T::~T().
If is_trivially_destructible<E>::value != true and ! *this, calls err->E::~E().

Remarks:
If is_trivially_destructible<T>::value and is_trivially_destructible<E>::value then this destructor
shall be a trivial destructor.

X.Y.9.3 Assignment [expected.object.assign]

expected<E,T>& expected<E,T>::operator=(const expected<E,T>& rhs);

Effects:
if bool(*this) and bool(rhs), assigns *rhs to the contained value val, otherwise
if bool(*this) and ! rhs, destroys the contained value by calling val->T::~T() and initializes the contained
value as if direct-non-list-initializing an object of type E with rhs.error(), otherwise
if ! *this and ! rhs, assigns rhs.error() to the contained value err, otherwise
if ! *this and bool(rhs), destroys the contained value by calling err->E::~E() and initializes the contained
value as if direct-non-list-initializing an object of type E with rhs.error().

Returns:
*this.

Postconditions:
bool(rhs) == bool(*this).

Exception Safety:
If any exception is thrown, the values of bool(*this) and bool(rhs) remain unchanged. If an exception
is thrown during the call to T’s copy constructor, no effect. If an exception is thrown during the call to
T’s copy assignment, the state of its contained value is as defined by the exception safety guarantee of
T’s copy assignment. If an exception is thrown during the call to E’s copy constructor, no effect. If an
exception is thrown during the call to E’s copy assignment, the state of its contained value is as defined
by the exception safety guarantee of E’s copy assignment.

Remarks:
This signature shall not participate in overload resolution unless
is_copy_constructible<T>::value and
is_copy_assignable<T>::value and
is_copy_constructible<E>::value and
is_copy_assignable<E>::value.

expected<E,T>& expected<E,T>::operator=(expected<E,T>&& rhs) noexcept(/∗see below∗/);

Effects:
if bool(*this) and rhs is values, assigns std::move(*rhs) to the contained value val, otherwise
if bool(*this) and ! rhs, destroys the contained value by calling val->T::~T() and initializes the contained
value as if direct-non-list-initializing an object of type E with rhs.error(), otherwise
if ! *this and ! rhs, assigns std::move(rhs.error()) to the contained value err, otherwise if ! *this and
bool(rhs), destroys the contained value by calling err->E::~E() and initializes the contained value as if
direct-non-list-initializing an object of type E with rhs.error().

Returns:
*this.

Postconditions:

33

bool(rhs) == bool(*this).
Remarks:

The expression inside noexcept is equivalent to:
is_nothrow_move_assignable<T>::value &&
is_nothrow_move_constructible<T>::value &&
is_nothrow_move_assignable<E>::value &&
is_nothrow_move_constructible<E>::value.

Exception Safety:
If any exception is thrown, the values of bool(*this) and bool(rhs) remain unchanged. If an exception
is thrown during the call to T’s move constructor, the state of rhs.val is determined by exception safety
guarantee of T’s move constructor. If an exception is thrown during the call to T’s move assignment,
the state of val and rhs.val is determined by exception safety guarantee of T’s move assignment. If an
exception is thrown during the call to E’s move constructor, the state of rhs.err is determined by exception
safety guarantee of E’s move constructor. If an exception is thrown during the call to E’s move assignment,
the state of err and rhs.err is determined by exception safety guarantee of E’s move assignment.

Remarks:
This signature shall not participate in overload resolution unless
is_move_constructible<T>::value and
is_move_assignable<T>::value and
is_move_constructible<E>::value and is_move_assignable<E>::value.

template <class U>
expected<E,T>& expected<E,T>::operator=(U&& v);

Effects:
If bool(*this) assigns std::forward<U>(v) to the contained value; otherwise destroys the contained value
by calling err->E::~E() and initializes the unexpected value as if direct-non-list-initializing object of type
T with std::forward<U>(v).

Returns:
*this.

Postconditions:
bool(*this).

Exception Safety:
If any exception is thrown, bool(*this) remains unchanged. If an exception is thrown during the call
to E’s constructor, the state of e is determined by exception safety guarantee of E’s constructor. If an
exception is thrown during the call to E’s assignment, the state of err and e is determined by exception
safety guarantee of E’s assignment.

Remarks:
This signature shall not participate in overload resolution unless
is_constructible<T,U>::value and
is_assignable<T&, U>::value.

[Note: The reason to provide such generic assignment and then constraining it so that effectively T == U is
to guarantee that assignment of the form o = {} is unambiguous. —end note]
expected<E,T>& expected<E,T>::operator=(unexpected_type<E>&& e);

Effects:
If ! *this assigns std::forward<E>(e.value()) to the contained value; otherwise destroys the contained
value by calling val->T::~T() and initializes the contained value as if direct-non-list-initializing object of
type E with std::forward<unexpected_type<E>>(e).value().

Returns:
*this.

Postconditions:
! *this.

Exception Safety:
If any exception is thrown, value of valued remains unchanged. If an exception is thrown during the call
to T’s constructor, the state of v is determined by exception safety guarantee of T’s constructor. If an
exception is thrown during the call to T’s assignment, the state of val and v is determined by exception
safety guarantee of T’s assignment.

34

Remarks:
This signature shall not participate in overload resolution unless
is_copy_constructible<E>::value and
is_assignable<E&, E>::value.

template <class... Args>
void expected<E,T>::emplace(Args&&... args);

Effects:
if bool(*this), assigns the contained value val as if constructing an object of type T with the arguments
std::forward<Args>(args)..., otherwise destroys the contained value by calling err->E::~E() and initial-
izes the contained value as if constructing an object of type T with the arguments std::forward<Args>(args)....

Postconditions:
bool(*this).

Exception Safety:
If an exception is thrown during the call to T’s constructor, *this is disengaged, and the previous val (if
any) has been destroyed.

Throws:
Any exception thrown by the selected constructor of T.

Remarks:
This signature shall not participate in overload resolution unless
is_constructible<T, Args&&...>::value.

template <class U, class... Args>
void expected<E,T>::emplace(initializer_list<U> il, Args&&... args);

Effects:
if bool(*this), assigns the contained value val as if constructing an object of type T with the arguments
il,std::forward<Args>(args)..., otherwise destroys the contained value by calling err->E::~E() and ini-
tializes the contained value as if constructing an object of type T with the arguments il,std::forward<Args>(args)....

Postconditions:
bool(*this).

Exception Safety:
If an exception is thrown during the call to T’s constructor, ! *this , and the previous val (if any) has
been destroyed.

Throws:
Any exception thrown by the selected constructor of T.

Remarks:
The function shall not participate in overload resolution unless:
is_constructible<T, initializer_list<U>&, Args&&...>::value.

X.Y.9.4 Swap [expected.object.swap]

void expected<E,T>::swap(expected<E,T>& rhs) noexcept(/∗see below∗/);

Effects:
if bool(*this) and bool(rhs), calls swap(val, rhs.val), otherwise
if ! *this and ! rhs, calls swap(err, rhs.err), otherwise
if bool(*this) and ! rhs, initializes a temporary variable e by direct-initialization with std::move(rhs.err)),
initializes the contained value of rhs by direct-initialization with std::move(*(*this)), initializes the ex-
pected value of *this by direct-initialization with std::move(rhs.err) and swaps has_value and rhs.has_value,
otherwise
calls to rhs.swap(*this);

Exception Safety:

35

TODO: This must be reworded. If any exception is thrown, values of has_value and rhs.has_value remain
unchanged. If an exception is thrown during the call to function swap the state of val and rhs.val is
determined by the exception safety guarantee of swap for lvalues of T. If an exception is thrown during the
call to T’s move constructor, the state of val and rhs.val is determined by the exception safety guarantee
of T’s move constructor.

Throws:
Any exceptions that the expressions in the Effects clause throw.

Remarks:
The expression inside noexcept is equivalent to:
is_nothrow_move_constructible<T>::value && noexcept(swap(declval<T&>(), declval<T&>())) &&
is_nothrow_move_constructible<E>::value && noexcept(swap(declval<E&>(), declval<E&>())).

Remarks:
The function shall not participate in overload resolution unless:
LValues of type T shall be swappable, is_move_constructible<T>::value, LValues of type E shall be swap-
pable and is_move_constructible<T>::value.

X.Y.9.5 Observers [expected.object.observe]

constexpr T const* expected<E,T>::operator->() const;
constexpr T* expected<E,T>::operator->();

Requires:
bool(*this).

Returns:
&val.

Remarks:
Unless T is a user-defined type with overloaded unary operator&, the first function shall be a constexpr
function.

constexpr T const& expected<E,T>::operator *() const&;
constexpr T& expected<E,T>::operator *() &;
constexpr T&& expected<E,T>::operator *() &&;

Requires:
bool(*this).

Returns:
val.

Remarks:
The first function shall be a constexpr function.

constexpr explicit expected<E,T>::operator bool() noexcept;

Returns:
has_value.

Remarks:
This function shall be a constexpr function.

constexpr T const& expected<E,T>::value() const&;
constexpr T& expected<E,T>::value() &;

Returns:
val, if bool(*this).

Throws:
bad_expected_access(err) if !*this.

Remarks:
The first function shall be a constexpr function.

constexpr T&& expected<E,T>::value() &&;

36

Returns:
move(val), if bool(*this).

Throws:
bad_expected_access(err) if !*this.

Remarks:
The first function shall be a constexpr function.

constexpr E const& expected<E,T>::error() const&;
constexpr E& expected<E,T>::error() &;

Requires:
!*this.

Returns:
err.

Remarks:
The first function shall be a constexpr function.

constexpr E&& expected<E,T>::error() &&;

Requires:
!*this.

Returns:
move(err).

Remarks:
The first function shall be a constexpr function.

template <class Ex>
bool expected<E,T>::has_exception() const;

Returns:
true if and only if !(*this) and the stored exception is a base type of Ex.

constexpr unexpected<E> expected<E,T>::get_unexpected() const;

Requires:
!*this.

Returns:
make_unexpected(err).

template <class U>
constexpr T expected<E,T>::value_or(U&& v) const&;

Returns:
bool(*this) ? **this : static_cast<T>(std::forward<U>(v)).

Exception Safety:
If has_value and exception is thrown during the call to T’s constructor, the value of has_value and v remains
unchanged and the state of val is determined by the exception safety guarantee of the selected constructor
of T. Otherwise, when exception is thrown during the call to T’s constructor, the value of *this remains
unchanged and the state of v is determined by the exception safety guarantee of the selected constructor
of T.

Throws:
Any exception thrown by the selected constructor of T.

Remarks:
If both constructors of T which could be selected are constexpr constructors, this function shall be a
constexpr function.

Remarks:
The function shall not participate in overload resolution unless:
is_copy_constructible<T>::value and
is_convertible<U&&, T>::value.

37

template <class U>
T expected<E,T>::value_or(U&& v) &&;

Returns:
bool(*this) ? std::move(**this) : static_cast<T>(std::forward<U>(v)).

Exception Safety:
If has_value and exception is thrown during the call to T’s constructor, the value of has_value and v remains
unchanged and the state of val is determined by the exception safety guarantee of the T’s constructor.
Otherwise, when exception is thrown during the call to T’s constructor, the value of *this remains un-
changed and the state of v is determined by the exception safety guarantee of the selected constructor of
T.

Throws:
Any exception thrown by the selected constructor of T.

Remarks:
The function shall not participate in overload resolution unless:
is_move_constructible<T>::value and
is_convertible<U&&, T>::value.

template <class G>
constexpr T expected<E,T>::value_or_throw() const&;

Returns:
If bool(*this) then **this.

Exception Safety:
If has_value and exception is thrown during the call to T’s constructor, the value of has_value remains
unchanged and the state of val is determined by the exception safety guarantee of the selected constructor
of T. Otherwise, when exception is thrown during the call to T’s constructor, the value of *this remains
unchanged.

Throws:
If ! *this then G(error()).
Any exception thrown by the selected constructor of T.

Remarks:
If both constructors of T which could be selected are constexpr constructors, this function shall be a
constexpr function.

Remarks:
The function shall not participate in overload resolution unless:
is_copy_constructible<T>::value and
is_convertible<U&&, T>::value.

template <class G>
T expected<E,T>::value_or_throw() &&;

Returns:
If bool(*this) then std::move(**this).

Exception Safety:
If has_value and exception is thrown during the call to T’s constructor, the value of has_value remains
unchanged and the state of val is determined by the exception safety guarantee of the T’s constructor. Oth-
erwise, when exception is thrown during the call to T’s constructor, the value of *this remains unchanged.

Throws:
If ! *this then G(error()).
Any exception thrown by the selected constructor of T.

Remarks:
The function shall not participate in overload resolution unless:
is_move_constructible<T>::value and
is_convertible<U&&, T>::value.

template <class E, class U>
constexpr expected<E,U> expected<E,expected<E,U>>::unwrap() const&;

>::unwrap() &&;

38

Returns:
If bool(*this) then **this. else get_unexpected()

Throws:
Any exception thrown by the selected constructor of expected<E,U>.

Remarks:
The function shall not participate in overload resolution unless:
is_copy_constructible<expected<E,T>>::value

template <class E, class T>
constexpr expected<E,T> expected<E,T>::unwrap() const&;

>::unwrap() &&;

Returns:
*this.

Throws:
Any exception thrown by the selected constructor of expected<E,T>.

Remarks:
The function shall not participate in overload resolution unless:
T is not expected<E,U> and
is_copy_constructible<expected<E,T>>::value

template <class E, class U>
expected<E,T> expected<E, expected<E,U>>::unwrap() &&;

>::unwrap() &&;

Returns:
If bool(*this) then std::move(**this). else get_unexpected()

Throws:
Any exception thrown by the selected constructor of expected<E,U>.

Remarks:
The function shall not participate in overload resolution unless:
is_move_constructible<expected<E,U>>::value

template <class E, class T>
template expected<E,T> expected<E,T>::unwrap() &&;

>::unwrap() &&;

Returns:
std::move(**this).

Throws:
Any exception thrown by the selected constructor of expected<E,T>.

Remarks:
The function shall not participate in overload resolution unless:
is_move_constructible<expected<E,T>>::value

X.Y.9.6 Factories [expected.object.factories]

template <class Ex,class F>
expected<E,T> expected<E,T>::catch_exception(F&& func) const;

Effects:
if has_exception<Ex>() call the continuation function fuct with the stored exception as parameter.

Returns:
if has_exception<Ex>() returns the result of the call continuation function fuct possibly wrapped on a
expected<E,T>, otherwise, returns *this.

39

template <class Ex,class F>
auto expected<E,T>::then(F&& func) const -> unwrap_nested_expected_t<expected<E, decltype(func(val))>>;

Returns:
returns unwrap(expected<E, decltype(func(val))>(funct(*this))),

template <class Ex,class F>
auto expected<E,T>::mbind(F&& func) const -> unwrap_nested_expected_t<expected<E, decltype(func(val))>>;

Returns:
if bool(*this) returns unwrap(expected<E, decltype(func(val))>(funct(**this))), otherwise, returns get_unexpected().

template <class Ex,class F>
expected<E,T> expected<E,T>::catch_error(F&& func) const;

Returns:
if ! (*this) returns unwrap(expected<E, decltype(func(val))>(funct(**this))), if ! *this returns the
result of the call continuation function fuct possibly wrapped on a expected<E,T>, otherwise, returns
*this.

X.Y.10 expected as a meta-fuction [expected.object.meta]

template <class E>
class expected<E, holder>
public:

template <class T>
using type = expected<E,T>

};

X.Y.11 expected for void [expected.object.void]

template <class E>
class expected<E, void>
{
public:

typedef void value_type;
typedef E error_type;

template <class U>
struct rebind {

typedef expected<error_type, U> type;
};

// ??, constructors
constexpr expected() noexcept;
expected(const expected&);
expected(expected&&) noexcept(see below);
constexpr explicit expected(in_place_t);

constexpr expected(unexpected_type<E> const&);
template <class Err>
constexpr expected(unexpected_type<Err> const&);

// ??, destructor
~expected();

// ??, assignment
expected& operator=(const expected&);
expected& operator=(expected&&) noexcept(see below);
void emplace();

// ??, swap
void swap(expected&) noexcept(see below);

40

// ??, observers
constexpr explicit operator bool() const noexcept;
void value() const;
constexpr E const& error() const&;
constexpr E& error() &;
constexpr E&& error() &&;
constexpr unexpected<E> get_unexpected() const;

template <typename Ex>
bool has_exception() const;

template constexpr ’see below’ unwrap() const&;
template ’see below’ unwrap() &&;

// ??, factories

template <typename Ex, typename F>
expected<E,void> catch_exception(F&& f);

template <typename F>
auto mbind(F&& func) const -> expected<E, decltype(func())>;

template <typename F>
expected<void,E> catch_error(F&& f);

template <typename F>
auto then(F&& func) const -> expected<E, decltype(func(*this))>;

private:
bool has_value; // exposition only
union
{

unsigned char dummy; // exposition only
error_type err; // exposition only

};
};

TODO: Describe the functions.

X.Y.12 unexpect tag [expected.unexpect]

struct unexpet_t{};
constexpr unexpet_t unexpet{};

X.Y.13 Template Class bad_expected_access [expected.bad_expected_access]

namespace std {
template <class E>
class bad_expected_access : public logic_error {
public:

explicit bad_expected_access(E);
constexpr error_type const& error() const;
error_type& error();

};
}

The template class bad_expected_access defines the type of objects thrown as exceptions to report the
situation where an attempt is made to access the value of a unexpected expected object.

bad_expected_access::bad_expected_access(E e);

Effects:
Constructs an object of class bad_expected_access storing the parameter.

constexpr E const& bad_expected_access::error() const;
E& bad_expected_access::error();

41

Returns:
The stored error..

Remarks:
The first function shall be a constexpr function.

X.Y.14 Class expected_default_constructed [expected.expected_default_constructed]

namespace std {
template <class E>
class expected_default_constructed : public logic_error {
public:

explicit expected_default_constructed();
};

}

The class expected_default_constructed defines the type of objects thrown as exceptions to report the situa-
tion where an attempt is made to access the expected<exception_ptr,T>::error()/expected<exception_ptr,T>::get_unexpected()
value of a unexpected expected object that has no exception stored.

TODO: Describe the functions.

X.Y.15 Expected Relational operators [expected.relational_op]

TODO: Describe the functions.

X.Y.16 Comparison with T [expected.comparison_T]

TODO: Describe the functions.

X.Y.17 Comparison with unexpected<E> [expected.comparison_unexpected_E]

TODO: Describe the functions.

X.Y.18 Specialized algorithms [expected.specalg]

template <class T, class E>
void swap(expected<E,T>& x, expected<E,T>& y) noexcept(noexcept(x.swap(y)));

Effects:
calls x.swap(y).

X.Y.19 Expected Factories [expected.factories]

template <class T>
constexpr expected<exception_ptr, typename decay<T>::type> make_expected(T&& v);

Returns:
expected<exception_ptr, typename decay<T>::type>(std::forward<T>(v)).

expected<exception_ptr, void> make_expected();
template <class E>
expected<E, void> make_expected();

Returns:
expected<E,void>(in_place).

template <class T>
expected<exception_ptr,T> make_expected_from_exception(std::exception_ptr v);

Returns:
expected<exception_ptr,T>(unexpected_type<E>(std::forward<E>(v))).

template <class T, class E>
constexpr expected<decay_t<E>,T> make_expected_from_error(E e);

42

Returns:
expected<decay_t<E>,T>(make_unexpected(e));

template <class T>
constexpr expected<exception_ptr,T> make_expected_from_current_exception();

Returns:
expected<exception_ptr,T>(make_unexpected_from_current_exception())

template <class F>
constexpr typename expected<exception_ptr, result_of<F()>::type make_expected_from_call(F funct);

Equivalent to:

try
{

return make_expected(funct());
}
catch (...)
{

return make_unexpected_from_current_exception();
}

X.Y.20 Hash support [expected.hash]

template <class T, class E>
struct hash<expected<E,T>>;

Requires:
TODO: This must be reworded

The template specilaization hash<T> and hash<E> shall meet the requirements of class template hash
(Z.X.Y). The template specialization hash<expected<E,T>> shall meet the requirements of class template
hash. For an object o of type expected<E,T>, if bool(o), hash<expected<E,T>>()(o) shall evaluate to the
same value as hash<T, E>()(*o); otherwise it evaluates to an unspecified value.

template <class E>
struct hash<expected<E, void>>;

Requires:

9 Implementability
This proposal can be implemented as pure library extension, without any compiler magic support, in C++14.
An almost full reference implementation of this proposal can be found at TBoost.Expected [?].

10 Acknowledgement
We are very grateful to Andrei Alexandrescu for his talk, which was the origin of this work. We thanks also
to every one that has contributed to the Haskell either monad, as either’s interface was a source of inspiration.
Thanks to Fernando Cacciola, Andrzej KrzemieÃĚâĂđski and every one that has contributed to the wording
and the rationale of N3793 [?].

Vicente thanks personnaly Evgeny Panasyuk and Johannes Kapfhammer for their remarks on the DO-
expression.

43

	Introduction
	Motivation and Scope
	Use cases
	Impacts on the Standard
	Design rationale
	Related types
	Open questions
	Proposed Wording
	Implementability
	Acknowledgement

