
Enhancing the C++ Basic Character Set
with Standard Character Mappings

Document Number: PO3OORO
Date: 2016/04/01
Reply-To:

Robert Douglas (rwdougla@gmail.com)
Faisal Vali (faisalv@yahoo.com)
Nate Wilson (nwilson20@gmail.com)
Nevin “:-)” Liber (nevin@cplusplusguy.com)

Attention: EWG, LEWG

mailto:rwdougla@gmail.com
mailto:faisalv@yahoo.com
mailto:nwilson20@gmail.com
mailto:nevin@cplusplusguy.com

Motivation
Background

Prior Art
Proposal

Impact on the Standard
Proposed Wording

Examples
Future Work
Feature Test
Acknowledgements
Bibliography

Motivation
Languages evolve, as the means by which people best express their ideas. As this is the
domain of programming languages, it is up to us to make sure that C++ evolves in conjunction
with how people can best communicate their intents to machines and co-workers. Current
language has begun a transition to new forms of language.[1]

The world is additionally becoming far more social. In this new world, a competitive language
must be ready to embrace modern social forums with better support for the social paradigms of
the day. Unfortunately, C++ has a rather heavy syntax for expressing ideas. This is less of a
problem when armed with a keyboard and large monitors, but most devices these days are
smaller with shrinking keyboards, if any physical keyboard at all. This problem must be
mitigated, if C++ is to be an appealing language with the newest generation of developers.

Background
Historically, C++ has limited itself to the basic source character set, and left it to the implementation
to define any extended characters which may be used, and the means by which those characters
are mapped to the basic source character set. This limits the ability for a software developer to best
express their ideas in a cross-platform manner. In fact, to be truly standards compliant, in all
practicality, only the basic source character set is viable for code.

Prior Art
There have been a number of papers seeking to deal with the intricacies of unicode support in
the past. Such papers found, have been noted in the references section at the end of this paper.
It is understood that unicode support can be a tricky subject. This paper operates a bit differently
from the others, though, in tackling the issue of the unicode as an expression of the code, itself,
rather than the values defined in the code.

Visual Studio has been shipping with support for UTF-16 and UTF-8 within “identifiers, macros,
string and character literals, and in comments”[2] since Visual Studio 2015.

Clang has supported unicode in identifiers since at least 3.3. [3]

Proposal
As translation phase 1 is implementation-defined, we have a means by which to specify a
standard set of conversions from unicode characters to the basic source character set, with
minimal breakage. Through this, we can effectuate standard support for whatever subset of the
unicode standard we choose. Thus, we propose to define a standard set of conversions, at first
for all the keywords, with notice to implementors, that we may wish to extend the supported set
of unicode characters in the future.

Impact on the Standard
It is expected that this proposal will impact only the core library wording. No library features are
proposed at this time. All breakages would be limited to already implementation-defined
behavior.

Proposed Wording
1.2 Normative references [intro.refs]
(1.8) — ISO/IEC 10646-1:1993, Information technology —Universal Multiple-Octet Coded Character Set
(UCS)
— Part 1: Architecture and Basic Multilingual Plane
(1.8) — ISO/IEC 10646:2014, Information technology -- Universal Coded Character Set (UCS)

2.2 Phases of translation [lex.phases]
1 The precedence among the syntax rules of translation is specified by the following phases.11

1. Physical source file characters are mapped, in an implementation-defined manner except for those
listed in Table 1, to the basic source character set (introducing new-line characters for end-of-line
indicators) if necessary. For those characters in Table 1, the mapping is applied as specified, to the
basic source characters. (2.3) For all other characters, tThe set of physical source file characters
accepted is implementation-defined. Any source file character not in the basic source character set
(2.3) is replaced by the universal-character-name that designates that character. (An implementation
may use any internal encoding, so long as an actual extended character encountered in the source
file, and the same extended character expressed in the source file as a universal-character-name
(e.g., using the \uXXXX notation), are handled equivalently except where this replacement is reverted
in a raw string literal.)

Add a new table to 2.11 [lex.phases]
Table 1 - Unicode to Basic Source Character Set Conversions

Note to editor: Update all table numbers throughout.

Keyword Emoji Keyword Emoji Keyword Emoji Keyword Emoji Keyword Emoji

alignas
↔

continue
➰

friend � register ☑ true
👍

alignof ↩ decltype
🔎

goto ✈ reinterpret_
cast 😈

try
🚓

asm
☢

default
😃

if
❓

return
💩

typedef
📤

auto
🚗

delete
♻

inline
⏳

short
🔬

typeid
🔍

bool
💡

do
👇

int
🔢

signed
➖

typename ⌨

break
💔

double ✌ long
🐟

sizeof
📏

union
💍

case
💼

dynamic_
cast 🎆

_🎣

mutable
📻

static
⚡

unsigned
➕

catch
🚨

else
❔

namespace
📛

static_asser
t ⚡ _💂

using
📥

char
🔥

enum
📇

new
👶

static_cast
⚡ _🎣

virtual
👻

char16_t
🔥
16_t

explicit
💋

noexcept
🔇

struct
🏠

void
😱

char32_t
🔥
32_t

export
🚀

nullptr

☠
switch ⁉ volatile

⛽

class
🏫

extern
🚪

operator
💿

template
💪

wchat_t
w🔥
_t

const
💎

false
👎

private
🏩

this
👉

while
🔁

constexp
r 🗿

float
⛵

protected
🏦

thread_local
🎁

const_ca
st 💣

for
🍀

public
⛪

throw
🔈

Examples

Before After

template< typename T >
bool foo() {
 return true;
}

💪 < ⌨ T >💡 foo() { 💩 👍 ; }

#include <iostream>
using namespace std;
int main(int argc, char** argv) {
 cout << “Hello Emoji World!”;
 return 0;
}

#include <iostream>
📥 📛 std;
🔢 main(🔢 argc, 🔥 ** argv) {
 cout << “Hello Emoji World!”;
 💩 0;
}

#include <thread>
using namespace std;
bool run() {
 try {
 thread t(foo);
 thread t(bar);
 t1.join();
 t2.join();
 } catch (...) {
 cout << “Oops!”;
 return false;
 }
 return true;
}

#include <thread>
📥 📛 std;
💡 run() {
 🚓 {
 thread t(foo);
 thread t(bar);
 t1.join();
 t2.join();
 } 🚨 (...)
 { cout << “Oops!”; 💩 👎 ; }
💩 👍 ;
}

template<typename T, int Size>
class Container {
 using type = T;
 enum { size = Size };
 T data[];
};

💪 <⌨ T, 🔢 Size>
🏫 Container {
 📥 type = T;
 📇 { size = Size };
 T data[];
};

Future Work
We believe it would be beneficial to investigate other areas of the standard which would benefit
so substantially as the basic keywords. As such, it is our recommendation that LEWG consider
further papers proposing lists of mappings for common library function names.

To enable further enrichment of the unicode character set for programming in C++, we
recommend committee members consider active participation in WG2, also.

Feature Test

For the purposes of SG10, this paper recommends the macro name __cpp_emojis_rule

Acknowledgements
A special thanks to John Mulaney for his inspiration to this endeavor.

Bibliography
1) John McWhorter: https://www.ted.com/talks/

john_mcwhorter_txtng_is_killing_language_jk?language=en

#include <string>
using namespace std;
namespace helper {
 static string ToString(int val)
{
 switch(val) {
 case 1:
 return “One”;
 case 2:
 return “Two”;
 case 3:
 return “Three”;
 default:
 return “None”;
 }
 }
}

#include <string>
📥 📛 std;
📛 helper {
 ⚡ string ToString(🔢 val) {
 ⁉(val) {
 💼 1:
 💩 “One”;
 💼 2:
 💩 “Two”;
 💼 3:
 💩 “Three”;
 😃 :
 💩 “None”;
 }
 }
}

https://www.ted.com/talks/john_mcwhorter_txtng_is_killing_language_jk?language=en

2) Unicode Support in the Compiler and Linker https://msdn.microsoft.com/en-us/library/
xwy0e8f2.aspx

3) Clang Release Notes: http://llvm.org/releases/3.3/tools/clang/docs/ReleaseNotes.html
4) ISO 10646:2014: http://standards.iso.org/ittf/PubliclyAvailableStandards/

c063182_ISO_IEC_10646_2014.zip
5) N3572: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3572.html
6) N3336: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3336.html

https://msdn.microsoft.com/en-us/library/xwy0e8f2.aspx
http://llvm.org/releases/3.3/tools/clang/docs/ReleaseNotes.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/c063182_ISO_IEC_10646_2014.zip
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3572.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3336.html

