Profiles DG statement P3970R0

Doc. No. P3970R0

Date: 2026-01-16

Audience: EWG, SG12, SG20, SG23
Author: David Vandevoorde

Jeft Garland

Paul E. McKenney

Roger Orr

Bjarne Stroustrup

Michael Wong

Reply to: daveed@vandevoorde.com

Profiles and Safety: a call to action

There are massive, well-founded demands for improved safety and simpler use of C++. SG23
and EWG have repeatedly (by massive votes) pointed to “Profiles” as the direction for
addressing these urgent needs (e.g., Safety Profiles: Type-and-resource Safe programming in [SO
Standard C++ - the 2023 introduction of Profiles to EWG — and What are profiles? - a brief
summary of the aims of profiles with plenty of references). However, we still face a stream of

uncoordinated proposals to address problems from different perspectives, often not even
mentioning Profiles. The Profiles intellectual framework (based on the subset-of-superset

strategy ) has been developed over several years to cover a wide range of requests involving a
variety of notions of safety and style involving combinations of compile-time and run-time
techniques. The way to make progress is to build on the proposed Profiles framework (C++
Profiles: The Framework) and start experimenting with specific profiles within that framework.

For that to happen, we need the framework available and accessible on one or more C++
implementations, ideally on all major implementations. Otherwise, using different
initial/experimental profiles will require too much boilerplate code and different interfaces to
different tool chains (e.g., in-code annotations, compiler options, and build-system settings). That
will impede portability and possibly introduce incompatibilities that will be hard to root out in
the future. Currently, there is — to the best of our knowledge — a specification and an
experimental implementation is being conducted in a major C++ compiler. Also, an
implementation guide is being written. We encourage implementers to coordinate and if possible
collaborate to avoid inessential incompatibilities.

Beyond the framework implementation(s), we need to design and precisely specify a few initial
profiles. We need a reasonable common style of Profile descriptions. That — and bringing the
older documents in line with the C++26 specification — is a necessary first step on the way to
standardization. A start is made in A framework for Profiles development. We suggest the

following as plausible initial profiles:

e [Initialization: no guarantees are possible without guaranteed initialization of all objects
before their first use. The simplest implementation of this idea is to require explicit or


https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2816r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2816r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2025/p3704r0.pdf
https://www.stroustrup.com/SELLrationale.pdf
https://www.stroustrup.com/SELLrationale.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2025/p3589r2.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2025/p3589r2.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2025/p3589r2.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p3274r0.pdf

Profiles DG statement P3970R0

implicit initialization (e.g., default as for std::string) of every object. This points to the
need for two levels of description of each profile:
o A brief statement of the guarantee offered, e.g., “every object is initialized.”
o An implementation guide that lists the places where an implementation (library of
compiler) needs to take an action. A Safety Profile Verifying Initialization is an
effort in that direction.

e Ranges: we have hardened libraries, but to provide a manageable guarantee, there must

be a standard way of requesting their use and they must be complemented with compile-
time prevention of subscripting raw pointers and similar uncheckable constructs (e.g., see
Dealing with pointer errors: Separating static and dynamic checking).

e Resources: Every resource is held by an object with a destructor that releases it if/when it
goes out of scope (RAII).

e FEducation: Enforce a restricted version of C++ aimed at keeping novices out of the many
dark corners. The C++ Core Guidelines could be an inspiration, and the education study

group (SG20) is interested. Programming -- Principles and Practice Using C++ and A
Tour of C++ both follow such an approach.

The key profiles to get in place to address the most frequent “unsafety complaints” are

e Invalidation: No access through dangling pointers.
e Arithmetic: No implicit narrowing conversions. No overflow or underflow.

This has been described (Type-and-resource safety in modern C++) and prototyped (Lifetime

safety: Preventing common dangling) but requires precise specification and serious static
analysis so it is not ideal as part of initial implementation experiments.

After that, more profiles should be defined and implemented, notably a concurrency profile.
Please note that not every profile should be standardized and that not every profile will be safety
related.

The ideas outlined here need solid engineering to become reality: we encourage organizations
with such expertise to apply it and organizations with money to finance such work. In particular,
we encourage work on open source and on open implementation guidance.


https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2025/p3402r3.html
https://isocpp.org/files/papers/P3611R0.pdf
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://www.stroustrup.com/programming.html
https://www.stroustrup.com/tour3.html
https://www.stroustrup.com/tour3.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2410r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1179r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1179r1.pdf

