unless stop requested

Document Number: P3892R0

Date: 2025-10-27

Reply-to: Robert Leahy <rleahy@rleahy.ca>
Audience: SG1, LEWG

Abstract

This paper proposes adding an algorithm which neglects to start an asynchronous operation if
at the time it would’ve been started a stop request therefor is already outstanding.

Background

P3887 [1] proposes modifying std: :execution: :when_all to:

e Remove early stop detection, and
e Make its set_stopped_t() completion signature conditional on any of its children
exposing that same completion signature

One of the justifications presented by that paper is that (ibid., emphasis added):

“[T]he responsibility [of std: :execution: :when_all], ha[s] nothing to do with eager checking
for stop requests, functionality which can easily be added by a separate algorithm.”

For support of this claim it references a section of a conference talk ([2] at 26:55-28:22) given by
the author himself (also the author of this paper) wherein use of the “separate algorithm” alluded
to above is demonstrated (therein called if_not_stopped). Notably no implementation of that
algorithm is shown or otherwise provided.

Discussion

Stop Requests

The stop mechanism in std: :execution is built on top of the machinery added to support
std: :jthread [3]: Stop sources, tokens, and requests. Naming is certainly not something
LEWG takes lightly and therefore it stands to reason that we can read into these precise terms,
particularly “requests.” When something is “requested” it may be denied and verily PO660
alludes to this (emphasis added):



“[T]he use of the term ‘request’ [...] clearly communicate[s] the asynchronous and cooperative
nature of the abstraction.”

The fact that stop request handling is “cooperative” suggests that a stop request may have no
effect: The requested party may elect not to cooperate. This interpretation is bolstered when one
conceptualizes the result of handling a stop request as “serendipitous-success” [4]. If actioning
a request to stop induces serendipitous-success why would the recipient of such a request
prefer serendipitous-success to what we might call “true success” or even failure? These
lattermost modalities at least convey information about what happened, and if available
shouldn’t we prefer the modality which conveys more information?

One can imagine a use case for exactly this behavior: When a timeout expires a stop may be
requested (to induce the operation being timed out to promptly end, a behavior which is critical
for the “receiver contract” ([5] at §1.5.1) which lies at the center of the structured concurrency of
std: :execution). Now let us imagine at that exact instant true success or failure occurs.
Should the operation being timed out end with serendipitous-success, or should it prefer to yield
the true result of the operation the consumer was actually waiting on?

While the above-described logic makes sense in isolation as one considers ever larger,
composed parts of a system it becomes problematic. Larger components are liable to contain
possibly-unbounded loops and if the components thereof are always eagerly ready to complete
(and therefore never check for stop requests in accordance with the above) the emergent
property of application of the above principle is an operation which, in unfortunate
circumstances, is unstoppable.

This caveat might lead one to believe that stop checking should be built in at the framework
level, and that P3887 is misguided therefore in removing it from a foundational algorithm such
as std: :execution::when_all. But std: :execution: :when_all is not a looping construct
and therefore does not fall under the analysis laid out above. Instead we would expect to see
early stop handling in looping constructs (none of which have currently been standardized).

When we survey such constructs (as written or considered outside the standard), however, we
find they do not feature eager stop checking [6][7][8]. Instead one of the things we see is eager
stop checking injected at a well-chosen point via the algorithm proposed by this paper ([2] at
26:55-28:22).

Even if one still wanted to argue for pervasive, framework-level eager stop checking there would
also be the performance cost to reckon with. Eagerly checking for stop has a cost, and if this
were pervasive that cost would be linear in the number of composed components. This would
discourage users from composing larger parts from smaller ones, exactly the sort of problem the
design of the STL aims to avoid (and one which is elsewhere being addressed in the context of
std: :execution [9]).



Naming

When the author first implemented the proposed algorithm he called it if_not_stopped ([2] at
27:57-28:23). The following names have been considered:

e if not_stopped (the original name)

e when not_stopped

e upon_not_stopped

e unless stopped

e unless _stop_requested (the name proposed by this paper)

The above names all consist of two parts which will be discussed separately below.

Logical Operator

The name aims to describe the condition under which the child operation is started (see below)
but in order to do that it must establish the truth value of that condition. This involves naming the
logical operator to use.

From the plain language description of the algorithm it is clear that we want to neglect to start
the child operation when a stop request is outstanding. Put differently we want to start the child
operation when a stop request is not outstanding. We must figure out how to express this
negation in the name of the algorithm.

Of the options considered above the following names for this negation emerge, with respective
arguments:

e if not: This is plain and to the point but reuses two keywords from the language
connected by an underscore, also it is two words connected by an underscore rather
than just one word

e when_not: This reuses “when” which already has use in std: :execution: :when_all
(and the not-yet-standardized counterpart when_any)

e upon_not: This reuses “upon” which already has use in std: :execution: :upon_error
and : :upon_stopped

e unless: “Unless” unambiguously expresses “if not” without being two words

As such this paper proposes unless.

Condition

In addition to the logical operation applied to the condition (see above) the name of the
algorithm must also express the condition under which the operation will be started (or not
started).

The author’s first attempt to name the algorithm (if _not stopped) made use of stopped.
However it was pointed out (by Lewis Baker) that “stopped” describes a completion signal (i.e.



set_stopped) rather than a condition. The condition is best articulated as stop_requested
since that is the name of the member function required by the stoppable_token concept ([10]
at §33.3.3) (models of which are used to communicate the stop requests being discussed by

this algorithm’s name).

As such this paper proposes the name unless_stop requested.

Proposal

[execution.syn]

struct spawn_future_t { unspecified };
unless stop requested_t { unspecified };

struct

inline
inline
inline
inline
inline
inline
inline
inline
inline
inline
inline
inline
inline
inline
inline
inline
inline
inline
inline
inline
inline
inline
inline

constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr

unspecified write_env{};

unspecified unstoppable{};

starts_on_t starts_on{};

continues_on_t continues_on{};

on_t on{};

schedule_from_t schedule_from{};

then_t then{};

upon_error_t upon_error{};

upon_stopped_t upon_stopped{};

let value t let value{};

let_error_t let_error{};

let stopped t let stopped{};

bulk_t bulk{};

bulk chunked t bulk chunked{};
bulk_unchunked_t bulk_unchunked{};
when_all t when_all{};

when_all with_variant_t when_all with_variant{};
into_variant_t into_variant{};
stopped_as_optional_t stopped as optional{};
stopped _as_error_t stopped as_error{};
associate_t associate{};

spawn_future_t spawn_future{};

unless stop_requested t unless stop_requested{};

// [exec.cmplsig], completion signatures



[exec.unless.stop.requested]

Add the above-named section with contents as follows:

unless_stop_requested adapts a single input sender into a sender which starts the operation
represented by the input sender if and only if a stop has not been requested at the time at which
the composed operation is started.

The name unless_stop_requested denotes a customization point object. For subexpression
sndr, if decltype((sndr)) does not satisfy sender, unless_stop_requested(sndr) is
ill-formed.

Otherwise, the expression unless_stop_requested(sndr) is expression-equivalent to:

transform_sender(
get-domain-early(sndr),
make-sender(unless_stop_requested, {}, sndr))

Except that sndr is only evaluated once.

The exposition-only class template impls-for ([exec.snd.expos]) is specialized for
unless_stop_requested as follows:

namespace std::execution {
template<>
struct impls-for<unless stop requested t> : default-impls {
static constexpr auto start = see below;
}s
}

The member impls-for<unless_stop_requested t>::start is initialized with a callable
object equivalent to the following lambda expression:

[]<class State, class Rcvr, class 0p>(
State&, Rcvr& rcvr, Op& op) noexcept -> void

if constexpr (
lunstoppable_token<stop_token_of t<env_of t<Rcvr>>>)

if (get_stop_token(get_env(rcvr)).stop requested()) {
set_stopped(std::move(rcvr));
return;



start(op);

Implementation Experience

This paper has been implemented against nVidia’s reference implementation of
std: :execution [11].

Acknowledgements

The author would like to acknowledge Ville Voutilainen for encouraging him to write this paper
and to thank:

e Ville Voutilainen and Lewis Baker for naming input,
e lan Petersen for code review of the implementation, and
e Bryan St. Amour for wording review

References

[1] R. Leahy. Make when_all a Ronseal Algorithm P3887R0

[2] R. Leahy. Evolving C++ Networking with Senders & Receivers (Part 2). Core C++ 2024

[3] N. Josuttis et al. Stop Token and Joining Thread PO660R10

[4] K. Shoop et al. Cancellation is serendipitous-success P1677R2

[5] J. Hoberock et al. A Unified Executors Proposal for C++ P0443R14

[6]
https://github.com/facebookexperimental/libunifex/blob/b6bedebc4d87eda5e31b364585a84576
013eae67/include/unifex/repeat_effect_until.hpp

[7]
https://github.com/NVIDIA/stdexec/blob/138e136fa4b93e7e096a4968eaac1b0c94f0d255/includ
elexec/repeat_effect_until.hpp

[8] R. Leahy. Extending std::execution Further: Higher-Order Senders and the Shape of
Asynchronous Programs. C++ on Sea 2025

[9] L. Baker. Reducing operation-state sizes for subobject child operations P3425R1

[10] M. Dominiak et al. std::execution P2300R10

[11] https://github.com/NVIDIA/stdexec/pull/1667



	unless_stop_requested 
	Abstract 
	Background 
	Discussion 
	Stop Requests 
	Naming 
	Logical Operator 
	Condition 


	Proposal 
	[execution.syn] 
	[exec.unless.stop.requested] 

	Implementation Experience 
	Acknowledgements 
	References 

