Make when_all a Ronseal Algorithm

Document Number: P3887R0

Date: 2025-10-21

Reply-to: Robert Leahy <rleahy@rleahy.ca>
Audience: SG1, LEWG

Abstract

This paper proposes modifying std: :execution: :when_all such that it sends (and reports
that it sends) stopped completion signals only when at least one of its child operations sends
(and reports that it sends) such a signal.

Background

P2300 [1] adds the std: :execution: :when_all algorithm. Therein it describes the algorithm
thusly (id. at §4.20.11):

‘when_all returns a sender that completes once all of the input senders have completed.”

Early Stop

In addition to a high level articulation of purpose (quoted above) P2300 has the following to say
regarding the behavior of std: :execution: :when_all ([1] at §4.20.11):

“Iwhen_al L] completes inline on the execution resource on which the last input sender
completes, unless stop is requested before when_all is started, in which case it completes
inline within the call to start.”

libunifex, which is listed as “field experience” for P2300 (id. at §1.10.1), has an implementation
of when_all. This implementation does not have the eager stop detection described above. It
does however have late stop detection (i.e. if, upon the completion of all children, a stop has
been requested the value(s) or error which would otherwise have been synthesized is replaced
by a stopped completion signal).

Note that the above behavior with respect to early stop detection was not present in the original
proposal for std: :execution: :when_all ([2] at §9.6.5.14). The original proposal specified the
completion behavior of std: :execution: :when_all in terms only of the completions of the
children thereof. The behavior described above was added in revision 3 of P2300 ([3] at
§9.6.5.14). Revision 3 does not motivate the change except by saying (id. at §2.1):



“Specify the cancellation scope of the when_all algorithm.”

Note that a consequence of the modified/current behavior is that when early stop is detected the
child operations of std: :execution: :when_all are not started (i.e. std: :execution::start
is not applied thereto). This is not the case for the libunifex implementation (i.e. it always starts
all its children).

Also note that no part of the above is predicated on the associated stop token actually being
capable of reporting a stop request, a property which P2300 goes out of its way to make
detectable (see std: :unstoppable_token ([1] at §33.3.3) and std: :never_stop_token (id. at
§33.3.7)).

Unreachable Stop

As with other facilities in P2300 std: :execution: :when_all is specified in terms of code. This
has proven to be an extremely problematic specification strategy as irrelevant minutiae which
happens to be a consequence of the code chosen is burned into the specification and
irrevocably guaranteed, there is no gray area, no implementation latitude, only code whose
every behavior must be exactly emulated in order for an implementation to be conforming.

The above-articulated issue arises with respect to std: :execution: :when_all’s stop
handling.

The specification of std: :execution: :when_all ([1] at §4.20.11) specifies that state-type
shall have a member disp of type disposition. disposition is an enumeration with three
enumerators:

e started
e error
e stopped

With this given the completion logic is specified in terms of actions to take for each possible
value of disp:

1. “Ifdisp is equal to disposition::started/[..]’
2. “Otherwise, if disp is equal to disposition::error [..]
3. “Otherwise [...]’

Note that no enumerator of disposition is conditionally defined. Even if none of the children
are capable of sending a stopped completion signal:

e The stopped enumerator is still present, and
e The logic indicated in the third step above must, arguably, still be emitted even though it
is statically known to be unreachable



Note that the second bullet above is borne out by at least three implementations of when_all
[4][5][6] including two which purport to be reference implementations of P2300 [4][5].

Consequences

Either of the two previously-described qualities mean that, even given a set of child senders
none of which send set_stopped t(), a std::execution: :when_all sender will
unconditionally report that it can send set_stopped_t().

The former of the above-described qualities means that even if all child senders of

std: :execution: :when_all are stop token unaware (i.e. they do not stop in response to stop
requests (for a motivating example see [7] at §3.2) std: :execution: :when_all will check for
a stop request and honor it (immediately before starting the child operations, but at no other
point), perhaps belying the reasonable expectations of the consumer.

Discussion

Library Issue

The fact that std: :execution: :when_all arguably requires the receiver to support stopped
completion signals even when it is statically known one can never be emitted would arguably be
a defect were it not for the fact std: :execution: :when_all unconditionally sends stopped due
to the fact it enriches the child operations with early stop request checking.

If early stop request checking is removed the requirement that the downstream receiver support
the emission of a stopped completion signal even when it is statically known never to be emitted
(because none of the children emit it) should be unambiguously removed through a wording
tweak.

Single Responsibility Principle

The first quote from P2300 in the background section articulates a coherent single responsibility
for std: :execution: :when_all: An operation which completes once all its children complete.
This articulation, and the responsibility which springs therefrom, have nothing to do with eager
checking for stop requests, functionality which can easily be added by a separate algorithm ([8]
at 26:55-28:22).

Appeals to the single responsibility principle, however, can fall on deaf ears among
“pragmatists.” Concerns buttressed by the platonic principles of software engineering are
secondary to “real world use cases” and the convenience imagined to be wrought by wanton
coupling.



Fortunately we do not need to anchor our critique of the current formulation of

std: :execution: :when_all solely in the platonic domain. Given that “all the sender/receiver
features are language features being implemented in library” ([9] at §3) and given that C++
supports mandatory, orderly, well-defined clean up (i.e. RAIl) we need only to find examples of
sender algorithms which constitute such clean up and which must be run (and not skipped due
to a stop request detected early) for program correctness.

For the aforementioned we need not look far. Async scopes must be joined for correctness ([10]
at §5.6.5 and §5.7.6) and generalized async RAIl has been proposed [9]. Both of these have at
their core sender algorithms. Due to the reasons given above these algorithms will be unusable
with std: :execution: :when_all thereby belying one of the motivating principles of

std: :execution ([1] at §1.2):

“Care about all reasonable use cases, domains, and platforms.”

Principle of Least Surprise

The above-discussed quote not only lends itself to analysis through the lens of the single
responsibility principle, but also through the lens of the principle of least surprise. Upon seeing
an algorithm called std: :execution: :when_all users might imagine that it completes when
all child operations complete (i.e. precisely the articulation from the previously-mentioned
quote). Doing anything more (as the current specification demands) is astonishing because
std: :execution: :when_all does more than what it says on the tin (i.e. it's not a “Ronseal [11]
algorithm”).

Were it the case that the additional behavior is advantageous and/or benign the above might not
be an issue. Users either wouldn’t notice or wouldn’t be astonished by a slight or benign
divergence from their reasonable expectation. Unfortunately this is not the case for the reasons
laid out in the preceding section: When the behavior of std: :execution: :when_all diverges
from users’ reasonable expectations it is precisely because it introduces subtle incorrect
behavior. set_stopped_t() appears as a completion signature where it wasn’t expected
(because no child reports that completion signature). Operations which the user reasonably
believed would be started and allowed to run are skipped.

There is a narrower, less astonishing, Ronseal algorithm inside std: :execution: :when_all.
The version which appears when the red herring behavior with respect to stop requests is
removed (and perhaps later re-added as a separate algorithm as discussed in the preceding
section). C++26 should ship that, not what's currently in the working draft.



Proposal

[exec.when.all]

e Otherwise, evaluates:
if constexpr (sends-stopped) {
on_stop.reset();
set_stopped(std::move(rcvr));
} else {
unreachable();
}
where sends-stopped equals true if and only if
completion_signatures_of_t<Sndrs, when-all-env<Env>> contains
set_stopped_t() for any Sndrs.

The member impls-for<when_all_t>::start is initialized with a callable object equivalent to
the following lambda expression:

[]<class State, class Rcvr, class... Ops>(
State& state, Rcvr& rcvr, Ops&... ops) noexcept -> void {
state.on_stop.emplace(
get_stop_token(get_env(rcvr)),
on-stop-request{state.stop src});

—(start(ops), ...);
5
}

Implementation Experience

This paper has been implemented against nVidia’s reference implementation of
std: :execution [12].

Acknowledgements

The author would like to thank Bryan St. Amour for wording assistance.



References

[1] M. Dominiak et al. std::execution P2300R10

[2] M. Dominiak et al. std::execution P2300R2

[3] M. Dominiak et al. std::execution P2300R3

[4]
https://github.com/NVIDIA/stdexec/blob/138e136fa4b93e7e096a4968eaac1b0c94f0d255/includ
e/stdexec/__detail/__when_all.hpp#L210-L228

[3]

https://github.com/bemanproject/execution/blob/c587808532d26c47a3e2edebc810720224 cbffe
7/include/beman/execution/detail/when_all.hpp#L126-L157

[6]
https://github.com/facebookexperimental/libunifex/blob/main/include/unifex/when_all.hpp#L249-
L257

[7] E. Niebler. write_env and unstoppable Sender Adaptors P3284R4

[8] R. Leahy. Evolving C++ Networking with Senders & Receivers (Part 2). Core C++ 2024

[9] K. Shoop. async-object - aka async-RAIl P2894R0

[10] I. Petersen et al. async_scope - Creating scopes for non-sequential concurrency P3149
[11] https://www.ronseal.com/

[12] https://github.com/NVIDIA/stdexec/pull/1666



	Make when_all a Ronseal Algorithm 
	Abstract 
	Background 
	Early Stop 
	Unreachable Stop 
	Consequences 

	Discussion 
	Library Issue 
	Single Responsibility Principle 
	Principle of Least Surprise 

	Proposal 
	[exec.when.all] 

	Implementation Experience 
	Acknowledgements 
	References 

