
A Grammar for Whitespace Characters
Resolution for NB comment US 5-108

Document #: P3657R1
Date: 2025-10-20
Project: Programming Language C++
Audience: Core
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>

Contents
Abstract 2

Revision history 2

1 Introduction 3
1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 foundation to Support Resuming Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Proposed Solution 4

3 Details Resolved by Papers Adopted for C++26 CD 4

4 Review History 5
4.1 SG16 Teleconference 2025-05-14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5 Future Treatment of Vertical Whitespace 5

6 Wording 6

7 Acknowledgements 9

8 References 9

1

mailto:ameredith1@bloomberg.net


Abstract
This proposal addresses NB comment US 5-108 by providing a rigorous treatment of the C++ grammar for
whitespace characters. It clarifies the Standard regarding whitespace in general, but makes no functional changes.

Revision history
R1 October 2025 (Kona meeting)

— Rebased wording onto [N5014]
— Explicitly address NB comment US 5-108
— Significantly restructured the wording
— Dropped all suggestions that might change behavior
— Struck all references to whitespace separating tokens (rather than preprocessing tokens)
— Simplified comparison with paper [P2348R3]
— Recorded interactions with papers that landed for the C++26 CD
— Added future direction to handle vertical whitespace

R0 March 2024 (post-Hagenberg mailing)

Initial draft of this paper.

2



1 Introduction
1.1 Purpose
This paper is concerned with the underspecification of whitespace characters, an existing term of art that the
Standard uses in important and specific ways yet is not formally specified. Providing that specification leads to
the question of whether or not new-line characters are whitespace characters and resolving that question leads
to formally specifying whitespace as a term of power in a single place.

The intent of this paper is make no functional change to the language while bringing clarity and rigor to the
Standard specification for whitespace.

The initial version of this proposal made some small normative changes to simplify the treatment of whitespace,
but all such suggestions have been removed. The most useful of those suggestions have already been applied to
the C++26 CD via other papers.

1.2 Audience
This paper is targeted directly at the Core Working Group rather than Evolution because it aims to deliver no
functional change — i.e., the content should be purely editorial in nature.

This paper is addressed to the Core Working Group rather than the project editors because the changes are not
minimal and risk accidentally changing meaning if not reviewed by Core experts.

1.3 Previous work
Corentin Jabot has been making progress with a larger treatment of whitespace in general through paper
[P2348R3], last updated in September 2022. It needs a major revision to rebase onto the current C++ working
paper as there have been significant changes to the clauses it amends.

That paper provides a full treatment bringing all whitespace into the C++ grammar, including comments,
retaining the full content of comments rather than replacing them with a single space in phase 3 of transla-
tion. It further provides an extensive treatment of line-breaks, supporting both U+000D CARRIAGE RETURN and
U+000A LINE FEED as new-line markers, which makes up the majority of the wording changes. Finally, it resolves
[CWG1655] by revising the grammar associated with new-line characters

1.4 foundation to Support Resuming Work
Both this paper and [P2348R3] treat new-line as whitespace that is not a whitespace character.

The grammar for whitespace-character in this paper maps directly to the grammar for horizontal-whitespace in
[P2348R3].

Both papers have a plan to resolve Core issue [CWG2002] by removing the conflicted wording in 15.1 [cpp.pre]p5.

This paper should provide a solid foundation should work resume on [P2348R3].

3

https://wg21.link/cpp.pre


2 Proposed Solution
The approach of this paper is to introduce a new subsection that defines whitespace as a term of power, where
it also provides a grammar definition for whitespace-characters taken from the clearest definition of the term
“whitespace character”.

There are three complementary definitions of “whitespace character” under 5 [lex] but none of them are a term
of power. Similarly, the term “whitespace” is defined parenthetically but not as a term of power.

According to 5.10 [lex.token]p.1 (citing from [N5008])

Blanks, horizontal and vertical tabs, newlines, form-feeds, and comments (collectively, “whitespace”), as
described below, are ignored except as they serve to separate tokens.

This definition of “whitespace” informally specifies the set of characters that are considered whitespace characters
— blanks, horizontal and vertical tabs, newlines, and form-feeds. Note that “blanks” is not a defined term, but
assumed to mean the space character U+0020 SPACE. The primary definition of whitespace characters is given
in 5.5 [lex.pptoken]p1

… Preprocessing tokens can be separated by whitespace; this consists of comments 5.4 [lex.comment], or whites-
pace characters (U+0020 SPACE, U+0009 CHARACTER TABULATION, new-line, U+000B LINE TABULATION, and
U+000C FORM FEED), or both. …

A similar specification for the set of whitespace characters can be extracted from the grammar for d-char in the
specification of raw string literals.

A new grammar production,whitespace-character, will define whitespace characters more clearly. For practical
purposes this paper excludes new-line from the set of whitespace characters. Most uses of the term “whitespace
character” in the current Standard immediately follow up with “excluding new-line”. After applying the proposed
change there were no occurrences of whitespace-character that would have to add an extra reference to new-line
compared to the current Standard wording.

Note that there may be a subtle change to how the preprocessing-token grammar is interpreted, still achieving
the same effect as the current Standard. Observe the last part of the grammar for pp-token:

each non-whitespace character that cannot be one of the above

Non-whitespace characters are relevant, as whitespace is what separates tokens. Comments are not listed here,
as they are transformed into spaces in phase 3 of translation, and that is where new-line characters are also
removed under the more general guise of whitespace, in the proposed wording. If new-line characters were
deemed to survive to this point then they would become a pp-token matching this last term in the current
grammar. However as new-line continues to be whitespace but not a whitespace character it continues to serve
as a separator of tokens. This additional use as a pp-token becomes useful when new-line becomes a grammar
term in 15.1 [cpp.pre]. A future paper, such as a revision of [P2348R3], might want to move the new-line
grammar into 5 [lex].

Following an editorial trend that was confirmed in [P2843R3], all uses of “space” to mean “the space character”
are replaced with the Unicode code point U+0020 SPACE, and similarly all “horizontal tab”, “vertical tab”,
and “form feed” charaters are replaced by the corresponding precise forms U+0009 CHARACTER TABULATION,
U+000B LINE TABULATION, and U+000C FORM FEED. Then adjust surrounding text to similarly specify characters
as their Unicode code point only where that would improve consistency.

Do not adjust any uses of new-line to U+000A LINE FEED as we wish to leave that space clear for [P2348R3]
and its broader treatment of line-breaks.

3 Details Resolved by Papers Adopted for C++26 CD
— [P2996R13] merged phases 7 and 8 of translation, and addressed our one minor concern in the process.
— [P2843R3] changed the restrictions on which whitespace characters are allowed in comments.

4

https://wg21.link/lex
https://wg21.link/lex.token
https://wg21.link/lex.pptoken
https://wg21.link/lex.comment
https://wg21.link/cpp.pre
https://wg21.link/lex


4 Review History
4.1 SG16 Teleconference 2025-05-14

— concern expressed that we should follow Unicode treatment of vertical whitespace
— concern that the paper reaches too far into semantic changes

— recommendation to leave fixing UB to [P2843R3]
— the introduction of whitespace-character into the grammar seems “useful”
— clarification that whitespace matters only for separating preprocessing tokens and not regular tokens

5 Future Treatment of Vertical Whitespace
To make progress on the important matters of specification, this paper now drops all edits that would change
C++26 behavior with regard to vertical whitespace, notably vertical tabs and form feeds.

However, reviews of this paper and [P2843R3] showed interest in taking a principled approach to adopt a
consistent approach to vertical whitespace throughout the language. There is currently an between the treatment
of vertical whitespace in preprocessor directives vs. vertical whitespace in “regular” code. There is also an
inconsistency between C++ and the recommended practice coming for Unicode, which recommends treating all
vertical whitespace, including code-points that C++ does not yet recognise, as line-breaks with the semantic
meaning that entails.

To address these concerns, we provide the tentative plans to address all vertical whitespace concerns in C++29,
so that the editorial changes in this paper can be seen to support such a direction.

An overriding concern of the author is that vertical whitespace has become quite esoteric, largely divorced from
its meaning in the era of hard copy and printouts, awkward to enter as no current keyboards have keys for those
characters, and frequently badly rendered in user interfaces in ways that might lead to misleading presentation of
code once vertical whitespace takes on a normative meaning, such as the Unicode recommendation to consistently
treat all such whitespace as line-breaks.

Hence, the planned future direction will be to remove the inherent complexity and unfamiliarity of vertical
whitespace from the language. A preliminary (but substantial) code search suggests there are no active uses of
U+000B LINE TABULATION in the wild, but U+000C FORM FEED has a special place as a page separator in the Gnu
coding conventions. It should be sufficient to retain support for only text lines having just horizontal whitespace
and form feeds — in fact, it is not clear that support for horizontal whitespace on those lines is needed, but the
C++ grammar would be easier that way.

We will propose further simplifying whitespace by:

A complete set of wording changes would:

— Add U+000B LINE TABULATION to [tab:lex.charset.literal]
— Strike U+000B LINE TABULATION from [tab:lex.charset.basic]
— Strike U+000B LINE TABULATION and U+000C FORM FEED from whitespace-character
— Strike [Note 1] from 5.4.2 [lex.whitespace.char]p1
— Strike 15.1 [cpp.pre]p5
— Add a second null directive production that allows a sequence of U+000C FORM FEED followed by a new-line
— Resolves Core issue [CWG2002]

U+000C FORM FEED is retained in the basic character set so that we do not make a program ill-formed during
phase 3 where we would fail to form a valid preprocessor token before it could be discarded as a null directive
at the end of phase 4.

5

https://wg21.link/cpp.pre


6 Wording
Make the following changes to the C++ Working Draft. All wording is relative to [N5014], the latest draft at
the time of writing.

5.2 [lex.phases] Phases of translation
2 If the first translation character is U+FEFF BYTE ORDER MARK, it is deleted. Each sequence of a backslash

characterU+005C REVERSE SOLIDUS (\) immediately followed by zero or more whitespace characters other than
new-linewhitespace-characters followed by a new-line character is deleted, splicing physical source lines to form
logical source lines. Only the last backslash on any physical source line shall be eligible for being part of such a
splice.

[Note 2: Line splicing can form a universal-character-name (5.3.1 [lex.charset]). —end note]

A source file that is not empty and that (after splicing) does not end in a new-line character shall be processed
as if an additional new-line character were appended to the file.

3 The source file is decomposed into preprocessing tokens (5.5 [lex.pptoken]) and sequences of whitespace characters
(including comments) whitespace (5.4 [lex.whitespace]). A source file shall not end in a partial preprocessing
token or in a partial comment.1 Each comment (5.4.1 [lex.comment]) is replaced by one U+0020 SPACE character.
New-line characters are retained. Whether each nonempty sequence of whitespace characters other than new-line
whitespace-characters is retained or replaced by one U+0020 SPACE character is unspecified. As characters from
the source file are consumed to form the next preprocessing token (i.e., not being consumed as part of a comment
or other forms of whitespace), except when matching a c-char-sequence, s-char-sequence, r-char-sequence, h-char-
sequence, or q-char-sequence, universal-character-names are recognized (5.3.2 [lex.universal.char]) and replaced
by the designated element of the translation character set (5.3.1 [lex.charset]). The process of dividing a source
file’s characters into preprocessing tokens is context-dependent.

[Example 1: See the handling of < within a #include preprocessing directive (15.3 [cpp.include]). —end example]
4 The source file is analyzed as a preprocessing-file (15.1 [cpp.pre]). Preprocessing directives(Clause 15 [cpp]) are

executed, macro invocations are expanded (15.7 [cpp.replace]), and _Pragma unary operator expressions are
executed (15.13 [cpp.pragma.op]). A #include preprocessing directive (15.3 [cpp.include]) causes the named
header or source file to be processed from phase 1 through phase 4, recursively. All preprocessing directives are
then deleted. Whitespace characters separating preprocessing tokens areis no longer significant.

5.4 Whitespace [lex.whitespace]

5.4.1 Comments [lex.comment]
1 The characters /* start a comment, which terminates with the characters */. These comments do not nest. The

characters // start a comment, which terminates immediately before the next new-line character.

[Note 1: The comment characters //, /*, and */ have no special meaning within a // comment and are treated
just like other characters. Similarly, the comment characters // and /* have no special meaning within a /*
comment. —end note]

[Note 2: Comments are turned into U+0020 SPACE characters in phase 3 of translation as part of decomposing
a source file into preprocessor tokens and whitespace. —end note]

5.4.2 Whitespace Characters [lex.whitespace.char]

whitespace-character:
U+0009 CHARACTER TABULATION
U+000B LINE TABULATION
U+000C FORM FEED
U+0020 SPACE

1A partial preprocessing token would arise from …

6

https://wg21.link/lex.phases
https://wg21.link/lex.charset
https://wg21.link/lex.pptoken
https://wg21.link/lex.universal.char
https://wg21.link/lex.charset
https://wg21.link/cpp.include
https://wg21.link/cpp.pre
https://wg21.link/cpp
https://wg21.link/cpp.replace
https://wg21.link/cpp.pragma.op
https://wg21.link/cpp.include


1 Sequences of whitespace-characters, new-line characters, and comments (5.4 [lex.comment]) form whitespace,
which carries no semantic significance other than to separate preprocessing tokens (5.5 [lex.pptoken]).

[Note 1: U+000B LINE TABULATION and U+000C FORM FEED are not used to separate preprocessing tokens with
a preprocessing directive 15.1 [cpp.pre]. —end note]

[Note 2: Implementations are permitted but not required to coalesce non-empty sequences of whitespace into a
single U+0020 SPACE while retaining new-lines 5.2 [lex.phases]. —end note]

2 As described in Clause 15 [cpp], in certain circumstances during translation phase 4, whitespace (or the absence
thereof) serves as more than preprocessing token separation. Whitespace can appear within a preprocessing
token only as part of a header name or between the quotation characters in a character literal or string literal.

5.5 [lex.pptoken] Preprocessing tokens

preprocessing-token:
header-name
import-keyword
module-keyword
export-keyword
identifier
pp-number
character-literal
user-defined-character-literal
string-literal
user-defined-string-literal
preprocessing-op-or-punc
each non-whitespace characterwhitespace-character that cannot be one of the above

1 A preprocessing token is the minimal lexical element of the language in translation phases 3 through 6. In
this document, glyphs are used to identify elements of the basic character set (5.3.1 [lex.charset]). The
categories of preprocessing token are: header names, placeholder tokens produced by preprocessing import and
module directives (import-keyword, module-keyword, and export-keyword), identifiers, preprocessing numbers,
character literals (including user-defined character literals), string literals (including user-defined string
literals), preprocessing operators and punctuators, and single non-whitespace characterwhitespace-characters
that do not lexically match the other preprocessing token categories. If a U+0027 APOSTROPHE, [or{.rm} a
U+0022 QUOTATION MARK, or character matches the last category, the program is ill-formed. If any character
not in the basic character set matches the last category, the program is ill-formed. Preprocessing tokens can be
separated by whitespace; this consists of comments 5.4 [lex.comment], or whitespace characters (U+0020 SPACE,
U+0009 CHARACTER TABULATION, new-line, U+000B LINE TABULATION, and U+000C FORM FEED), or both. As
described in Clause 15 [cpp], in certain circumstances during translation phase 4, whitespace (or the absence
thereof) serves as more than preprocessing token separation. Whitespace can appear within a preprocessing
token only as part of a header name or between the quotation characters in a character literal or string literal.

2 Each preprocessing token that is converted to a token (5.10 [lex.token]) …

7

https://wg21.link/lex.comment
https://wg21.link/lex.pptoken
https://wg21.link/cpp.pre
https://wg21.link/lex.phases
https://wg21.link/cpp
https://wg21.link/lex.pptoken
https://wg21.link/lex.charset
https://wg21.link/lex.comment
https://wg21.link/cpp
https://wg21.link/lex.token


5.10 [lex.token] Tokens

token:
identifier
keyword
literal
operator-or-punctuator

1 There are five kinds of tokens: identifiers, keywords, literals, operators, and other separators. Comments and
the characters U+0020 SPACE, U+0009 CHARACTER TABULATION, U+000B LINE TABULATION, U+000C FORM FEED,
and new-line (collectively, “whitespace”), as described below, are ignored except as they serve to separate tokens.

[Note 1: Whitespace can separate otherwise adjacent identifiers, keywords, numeric literals, and alternative
tokens containing alphabetic characters. —end note]

5.13.5 [lex.string] String literals

string-literal:
encoding-prefixopt " s-char-sequenceopt "
encoding-prefixopt R raw-string

s-char-sequence:
s-char s-char-sequenceopt

…

d-char-sequence:
d-char d-char-sequenceopt

d-char:
any member of the basic character set except:

whitespace-characters, U+0020 SPACE,
U+0028 LEFT PARENTHESIS, U+0029 RIGHT PARENTHESIS,
U+005C REVERSE SOLIDUS, U+0009 CHARACTER TABULATION,
U+000B LINE TABULATION, U+000C FORM FEED, and new-line

15 [cpp] Preprocessing directives

15.1 [cpp.pre] Preamble
5 The only whitespace characterwhitespace-characters that shall appear between preprocessing tokens within a

preprocessing directive (from just after the directive-introducing token through just before the terminating
new-line character) are space and horizontal-tab U+0020 SPACE and U+0009 CHARACTER TABULATION (including
spaces that have replaced comments or possibly other whitespace characterwhitespace-characters in translation
phase 3).

15.7 [cpp.replace] Macro replacement

15.7.1 [cpp.replace.general] General
8 The identifier immediately following the define is called the macro name. There is one name space for macro

names. Any whitespace characterwhitespace-characters preceding or following the replacement list of preprocess-
ing tokens are not considered part of the replacement list for either form of macro.

13 A preprocessing directive of the form …

… Within the sequence of preprocessing tokens making up an invocation of a function-like macro, new-line is
considered a normal whitespace characterwhitespace-character.

14 The sequence of preprocessing tokens bounded by …

8

https://wg21.link/lex.token
https://wg21.link/lex.string
https://wg21.link/cpp
https://wg21.link/cpp.pre
https://wg21.link/cpp.replace
https://wg21.link/cpp.replace.general


7 Acknowledgements
Thanks to Michael Park for the pandoc-based framework used to transform this document’s source from Mark-
down.

8 References
[CWG1655] Mike Miller. 2013-04-26. Line endings in raw string literals.

https://wg21.link/cwg1655

[CWG2002] Richard Smith. 2014-09-10. White space within preprocessing directives.
https://wg21.link/cwg2002

[N5008] Thomas Köppe. 2025-03-15. Working Draft, Programming Languages — C++.
https://wg21.link/n5008

[N5014] Thomas Köppe. 2025-08-05. Working Draft, Standard for Programming Language C++.
https://wg21.link/n5014

[P2348R3] Corentin Jabot. 2022-09-11. Whitespaces Wording Revamp.
https://wg21.link/p2348r3

[P2843R3] Alisdair Meredith. 2025-07-18. Preprocessing is never undefined.
https://wg21.link/p2843r3

[P2996R13] Barry Revzin, Wyatt Childers, Peter Dimov, Andrew Sutton, Faisal Vali, Daveed Vandevoorde, Dan
Katz. 2025-06-20. Reflection for C++26.
https://wg21.link/p2996r13

9

https://wg21.link/cwg1655
https://wg21.link/cwg2002
https://wg21.link/n5008
https://wg21.link/n5014
https://wg21.link/p2348r3
https://wg21.link/p2843r3
https://wg21.link/p2996r13

	Abstractabstract
	Revision historyrevision-history
	Introduction
	Purpose
	Audience
	Previous work
	foundation to Support Resuming Work

	Proposed Solution
	Details Resolved by Papers Adopted for C++26 CD
	Review History
	SG16 Teleconference 2025-05-14

	Future Treatment of Vertical Whitespace
	Wording
	Acknowledgements
	References

