
Concerns with the proposed addition of fibers to
C++ 26
ISO/IEC JTC1 SC22 WG21 Programming Language C++

P3620R0

Working Group: Library, Core, Evolution

Date: 2025-02-03

David Chisnall <David.Chisnall@cl.cam.ac.uk>

Matthew Taylor <mjtaylor214@hotmail.com>

Introduction
Several languages have N:M threading abstractions. The languages that have
implemented this successfully (Java, ocaml, and so on) all have one thing in
common: they have a clear distinction between code in the language virtual
machine and foreign code. In C++, this is not the case and, because C++ has
rich support for separate compilation and shared libraries, the equivalent of
foreign code may be C++ code compiled last year.

Fibres as an operating-system-level abstraction have numerous problems, which
have led to most systems that attempted to deploy them abandoning them.
As a language-level abstraction in a low-level language, they have even more
problems.

What are fibers?
Fibres are a building block for N:M threading, allowing a set of thread-like
abstractions to be multiplexed onto a single scheduled entity. In the general case,
they may be cooperatively scheduled (with explicit yielding) or preemptively
scheduled in response to timer events. The goal for fibers is to be faster for
context switching than normal thread switching.

What is the current proposal?
The current proposal is for fibers independent of any kind of scheduler. This is
intended to allow cooperative multitasking between fibers scheduled on one or
more (preemptively scheduled) OS threads.

Issues with the current proposal
The current proposal has several issues that will be discussed in detail.

1

mailto:David.Chisnall@cl.cam.ac.uk
mailto:mjtaylor214@hotmail.com


What is a context?

Fibres intended for userspace context switches. The root problem here is defining
what a context is. In the simplest case, it’s the contents of a register file, which
includes a stack pointer. This is not sufficient for most operating systems. Other
state may include:

• The current signal mask.
• Pending signals or asynchronous callbacks.
• In-flight asynchronous I/O
• And so on.

For example, userspace threading implementations historically used SIGALARM,
where a thread registers for the kernel to deliver a signal after a certain period
of time. Not switching that state in fibers is problematic in the presence of
third-party code. If one function calls alarm and then calls a yielding function
and the resumed fiber masks SIGALARM, the alarm will not be delivered.
Existing software may do both of these things, yet not document that they do
because it’s an implementation detail. Both of these are POSIX APIs that are
not specified by C++ and so ISO C++ cannot mandate their behaviour. The
same applies to Win32 asynchronous callbacks.

The IEEE Std 1003.1-2004 (“POSIX.1”) revision marked the functions make-
context() and swapcontext() (the ucontext APIs) as obsolete, noting that they
were intended for use for safely returning from a signal handler into the signalled
frame (which is not possible with setjmp / longjmp) and were not intended to
be used for threading. The IEEE Std 1003.1-2008 (“POSIX.1”) revision removed
the functions from the specification.

Correctly implementing this would require code that is specific to both architec-
tures and operating systems. This would make it unique in the C++ standard
library. Some features are architecture-specific but operating-system agnostic,
some are operating-system specific but architecture-agnostic. No existing features
have this property.

Users of TLS expect it to be private

Thread-local state is expected to be modified only in the same lexical scopes.
P0876 explicitly notes this in one context: exceptions. The exception implemen-
tation typically maintains a list of in-flight exceptions in thread-local storage. If
a fiber switch occurs in a catch block, this linked list can be corrupted.

Unfortunately, this is a general problem. If a library creates any kind of linked
list in thread-local storage that follows lexical scope, this will be corrupted. Note
that this does not rely on a fiber migrating between threads (which would be
disallowed by P0876R19), though permitting this would introduce more problems.
Variations of this idiom occur in various forms. For example:

• Using a parallel stack for large returns.

2

https://pubs.opengroup.org/onlinepubs/9699919799/functions/alarm.html


• Managing in-flight transactions for software-transactional memory.
• Providing exception-like behaviour with setjmp for languages without

exceptions.

These and more may exist in libraries called by C++. If any such library calls a
C++ function that yields, it may resume with this state corrupted.

Coroutines do not have this problem because the point at which a coroutine is
created and the point at which it yields are both visible. A coroutine cannot
yield with library code on the stack.

Accidental deadlocks

Systems that provide a scheduler and N:M threading modify their locks to make
them fiber-aware. This is essential to avoid accidental deadlocks. For example,
consider the simple case of a library that implements thread safety with a global
lock. Each function will look something like this:

std::mutex giant;

void someFunction()
{

std::lock_guard g{giant};
...

}

This trivial case is safe, but consider this small change:

struct UserExtensibleType
{

virtual void some_method() = 0;
};

std::mutex giant;

void someFunction(UserExtensibleType &object)
{

std::lock_guard g{giant};
...
object.some_method();

}

If the user’s implementation of some_method yields (directly or indirectly) and
the new fiber invokes another function from this library, the thread deadlocks.

This example may come from the composition of three different libraries:

• The library that implements the UserExtensibleType.
• The library that implements someFunction and other implementations.

3



• The library that the implementation of UserExtensibleType::some_method
calls, which uses fibers and yields.

Layering issues

The current proposal references a patch that pivots the TLS for an Itanium ABI
threading implementation such as libsupc++, libcxxrt, or libc++abi. This is
necessary because the ABI library sits at a lower level in the stack than the
standard library.

In existing implementations of C++, threads are a feature of the lowest level
of the implementation. The low-level C++ ABI or runtime library depends
on such features. The C++ standard library then exposes them to users via
C++-friendly abstractions.

Fibers are unusual in taking a feature that is not universally exposed by the
platform libraries (having been implemented on some platforms and removed on
most of those that tried) and then implementing it in the C++ standard library.

The deadlock from the previous section can be avoided in fiber implementations
that include a scheduler by modifying the locking primitives to yield if they fail
to acquire a lock. This is easy to do when fibers are introduced at the lowest
level of the stack, but not when they are added at the highest.

For example, the C++ ABI / runtime library for Itanium ABI implementations
provides features for thread-safe static initialisation. These define the lock that
is used to protect calls to the constructor for function-local static variables
with non-trivial constructors. This cannot be made fiber-safe with the current
proposal because fibers are implemented in the standard library, which sits at a
higher level in the stack.

One of the follow-on proposals suggests addressing the TLS-related issues dis-
cussed earlier by requiring all TLS to be replaced with fiber-local storage, an
approach taken by Windows UWP applications. This would further complicate
the layering issues because, on most platforms, TLS is provided one or two
layers below the C++ stack and so is out of the control of a C++ implementa-
tion. C11 introduced _Thread_local, which is currently equivalent to C++11’s
thread_local, but would not be if thread_local became fiber-local and the
underling platform did not support fibers.

Summary
Fibres introduce a lot of problems for composition with existing code. They are
hard to implement correctly and are not the same shape as anything else in the
standard library. Rather than wrapping existing operating system features and
exposing them to C++, they require that the standard library implement low-
level feature that are then not shared with low-level libraries in other languages,
such as C.

4


	Concerns with the proposed addition of fibers to C++ 26
	Introduction
	What are fibers?
	What is the current proposal?
	Issues with the current proposal
	What is a context?
	Users of TLS expect it to be private
	Accidental deadlocks
	Layering issues

	Summary


