
Contract-Violation Handlers
Document #: P2811R2
Date: 2023-4-20
Project: Programming Language C++
Audience: SG21 (Contracts)
Reply-to: Joshua Berne <jberne4@bloomberg.net>

Abstract

Numerous use cases for contracts in production environments depend upon handling contract
violations in a consistent and locally defined way. Based on existing designs deployed at scale over
many years, we present here a proposal to allow for link-time customization of contract-violation
handling, along with examples of how this method might satisfy a wide variety of important,
practical, and well-known usage scenarios.

Contents
1 Introduction 2

2 Motivation 3

3 Proposal 4
3.1 An Extensible contract_violation Value Type 4
3.2 Contract-Violation Handler 8
3.3 Default Violation Handler 9

4 Usage Examples 9
4.1 Custom Diagnostic Output 9
4.2 Throw on Contract Violation for Recovery 10
4.3 Propagating Predicate Exceptions 10
4.4 longjmp for Recovery 11
4.5 Performing a Safe Stop 12
4.6 Runtime-Selectable Violation Handler 12
4.7 Negative Testing of Non-noexcept Functions 14
4.8 Counting Repeated Violations 14

5 Throwing 16

6 Wording Changes 17

7 Conclusion 19

1

mailto:jberne4@bloomberg.net

Revision History
Revision 2

• Removed the ignore semantic enumeration

• Added discussion of counting violations for observed violations

• Added section on safe stopping

• Explicit clarification on proposed modification added to introduction

Revision 1

• Clarifications on the undefined behavior when using longjmp

• Reasoning for the contract_semantic::ignore and contract_violation_detection_mode::unknown
enumerators

• An explanation for why the violation handler is in the global namespace and clarification that
it should be attached to the global module

• Other minor corrections

Revision 0

• Original version of the paper for discussion during an SG21 telecon

1 Introduction
C++20 Contracts, prior to their removal, describe a conditionally supported mechanism for installing
a user-supplied contract-violation handler. This callback function — invoked immediately upon
each detected contract violation — was intended to support both (1) the handling of user-defined
reporting of a contract violation, e.g., via what mechanism and in what format to report the error,
and (2) managing the semantics of contract violations within the program, e.g., terminate (the
default), long jump (save and quit), throw (and what to throw), or, in some use cases, continue as if
contracts were disabled.

Handling contract violations via a user-provided callback is an established, well-tested approach that
is deployed in many modern assertion facilities. In particular, this approach has evolved directly from
that used by BDE1 in bsls_assert and bsls_review. User-provided contract-violation handlers were
first deployed to production at Bloomberg in 2004 and have been in continuous use ever since. In
addition, this approach has had later versions make their way through both LEWG and EWG to be
moved for standardization2 only to be rejected or removed at plenary prior to Standard publication.
That is, the eventual lack of acceptance of a Contracts facility for C++17 and again for C++20
had nothing whatsoever to do with the utility or design of the contract-violation handler; instead,
the issue was the design as a whole, i.e., the intrinsic use of macros or perceived design instability.

Attempting to clarify the semantics of contract checks3 made clear that the local aspects of what a
contract check should do — i.e., determining whether control flow can continue normally after a

1See [bde14].
2See [N4378] and [P0542R5].

2

violation and whether the contract is checked — are separate from the decision of how precisely to
report a contract violation.

The current MVP4 has no mechanism for altering the behavior on contract violation, nor does
it provide much guidance on what default behavior should occur when a contract violation is
detected. The only mandatory behavior dictated by the Eval_and_abort build mode, where all
contract-checking annotations are given the enforce5 semantic, is program termination.

We propose here two modifications to the contracts MVP.

1. Add the ability to provide a function — the contract-violation handler — to be invoked as part
of the contract-violation handling process. In a build mode such as Eval_and_abort, program
termination will occur when the contract-violation handler returns normally.

2. Establish a recommended practice for the behavior of the default contract-violation handler
that platforms might wish to adopt when applicable.

Concretely, the current MVP makes the behavior on contract violation in Eval_and_abort mode
implementation-defined, only requiring that the program does terminate on such violations (instead
of throwing or invoking longjmp). Given this assertion (using the syntax of [P2521R3]):

ASSERT(X);

The current behavior in Eval_and_abort mode could be imagined to be transform into something
like this:

if (X) {} else {
__invoke_platform_violation_handling();
__terminate_program();

}

Here the __invoke_platform_violation_handling() intrinsic is expected to not throw or invoke
longjmp, but otherwise has implementation-defined behavior.

This proposal makes this implementation-defined behavior into fully specified behavior, requiring
that the compiler prepare an appropriately populated std::contracts::contract_violation object
and then pass it to the (possibly) replaceable function ::handle_contract_violation.

We do not propose removing the program termination on normal returns from handling a contract
violation, as that would allow the observe semantic which should be the subject of a future proposal
incorporating additional build modes and meta-information with which to control the use of that
contract semantic.

2 Motivation
Custom violation handlers turn an overly simplified Contracts facility that is highly ineffective in
many environments into a moderately flexible and practicable one. Importantly, primary control

3See [P1332R0], [P1429R3], and [P1607R1].
4See [P2521R3].
5The enforce semantic for contract violations was originally named check_never_continue in [P1332R0] and is

identical, other than the name, to the semantic originally described there.

3

of the semantics of a contract check — i.e., whether it is checked and how control flows when
a violation is detected — remain governed by the choice of build mode. In the No_eval build
mode, contracts will continue to be ignored, and no contract-violation handler will be invoked. The
Eval_and_abort is currently the only build mode that would (or could) invoke the contract-violation
handler immediately following the detection of a contract violation. If, after a contract violation is
detected, the contract-violation handler returns normally, program execution will be terminated. A
typical custom violation handler will log appropriately; after that, the only mechanisms to circumvent
program termination are to throw an exception, enter an infinite loop, or invoke std::longjmp.
Continuation in this build mode is simply not an option.

Throughout the standardization process, two points have become abundantly clear: (1) No one
specification of violation handling is correct for all users on all platforms, and (2) having a consistent
and mostly portable way to customize behavior will greatly increase the utility (and thus, in some
views, the viability) of a Contracts facility for a wider range of users. Executing any code when
a contract violation is detected is often a risk because one can never be certain that the program
is not already exhibiting undefined behavior due to earlier bugs that were not detected by an
appropriate contract check. This risk must be balanced with the beneficial utility that can be
provided by producing useful diagnostics or making attempts at recovery — or at least saving the
user’s data — in an appropriately structured manner. We assert that having the ability to customize
contract-violation handling beyond just logging is, generally speaking, necessary and almost always
a net positive.

On some very specialized platforms, arbitrary selection of a contract-violation handler might be
considered an unacceptable security risk. Therefore, the ability to provide a replacement contract-
violation handler is only conditionally supported. We suggest that providing a candidate function
for replacement on platforms that do not support such replacement be an error so as to minimize
any related confusion. Platforms having somewhat less stringent security concerns might choose to
disallow replacement and instead to provide a choice of violation-handling implementations from
a selection of well-vetted, vendor-provided routines. Again, we would expect that on general-use
platforms, developers will be able to create and supply fully custom violation-handling routines at
build time.

3 Proposal
Our proposed solution to broaden the viability of a still-minimal Contracts facility starts with
how to define the object that will capture the details of a contract violation, how to specify a
contract-violation handler, and what the recommended default contract-violation handler should do.

3.1 An Extensible contract_violation Value Type

Proposal 1: The Standard Library std::contracts::contract_violation Type

A new language-support type, std::contracts::contract_violation, will be added to the
Standard Library and will be designed for extensibility in an ABI-compatible manner.

To specify a custom violation handler, we will need to provide a type to represent the information

4

that will be gathered and made available to a contract-violation handler when a contract violation
occurs. This type might have any number of properties, but we want to ensure that it can evolve
while remaining ABI compatible.

We therefore recommend the following expectations and requirements for this contract_violation
type.

• Property types will be builtin types, enumerations, or standard-library value types such as
std::source_location. Strings will be null-terminated byte strings denoted by a const char*.6

• Each property accessor will return by value, not reference. Hence, a contract_violation object
itself is never required to maintain a member for any of these properties unless it chooses to
do so.

• Each property of std::contracts::contract_violation objects will have a recommended
practice for any values supplied when a contract violation is detected but no requirements as
to the specific values that property must be populated with. Implementations may, therefore,
choose to store more information for improved diagnostics or instead carry less information in
an executable for reduced overhead, potentially leaving that choice to the user.

• Objects of type std::contracts::contract_violation will be passed by const&, not by value,
to the contract-violation handler.

Proposal 1.1: The <contract> Header

The type std::contracts::contract_violation shall be defined in a new language support
header <contract>.

The C++20 Contracts facility has the primary declaration of this type in a new header, <contracts>,
and we see no compelling reason to place it elsewhere. But, much like other complex systems (e.g.,
std::pmr), we now understand that this facility will inevitably evolve to require many other such
supporting types; hence, we propose to give our new Contracts facility its own namespace under
std, std::contracts. (This sort of logical-physical cohesion is considered by many to be an industry
best practice.)

Proposal 1.2: The location Property

The type std::contracts::contract_violation shall provide this accessor:
std::source_location location() const noexcept;

The recommended practice for the location property is to provide a source location for identifying
the contract-checking annotation that has been violated. When possible on a precondition, this
property would ideally be the source location of the point of function invocation. When the invocation
location cannot be ascertained and on other contract checks, the location provided would be the
source location of the contract check itself.

6See [P1639R0] for the LEWG reasoning behind the use of const char* in std::source_location and
associated arguments in favor of using const char* over std::string_view in types necessary to the use of core
language features such as contract_violation.

5

Compiler flags that request that built executables not store information regarding the source code
that produced the executable should not be rendered nonconforming by the need to populate this
location property. To allow such options, producing a default-constructed source_location from
this property would be permitted, although this option would be nonoptimal for those users who
did not explicitly choose to have this information made unavailable.

Proposal 1.3: The comment Property

The type std::contracts::contract_violation shall provide this accessor:
const char* comment() const noexcept;

The recommended practice for the comment property is to include a textual representation of the
predicate expression in the contract-checking annotation that has been violated. When storing
the text of all potentially violated contract checks in a program is deemed to be too inefficient or
cumbersome, returning the empty string ("") instead is recommended.

Proposal 1.4: The detection_mode Property

The <contract> header shall provide an enumeration having members contingent on which
forms of violation detection are accepted:

namespace std::contracts {
enum class contract_violation_detection_mode {

unknown,
predicate_false,
predicate_exception,
predicate_detected_undefined_behavior

};
}

The type std::contracts::contract_violation shall provide this accessor:
contract_violation_detection_mode detection_mode() const noexcept;

Detection of a contract violation can be triggered in three ways. Typically, the violation will be
triggered when a contract-checking predicate evaluates to false, thereby clearly indicating that the
expected boolean condition failed to hold. In such cases, the value returned from the detection_mode
accessor will be contract_violation_detection_mode::predicate_false. The various subproposals
of Proposal 3 in [P2751R0] indicate that other situations, such as a predicate that throws or that
has readily detectable undefined behavior, are also potential candidates for triggering a contract
violation, and in such cases, indicating which mechanism led to the violation can greatly help guide
the violation-handling behavior.

To retain the implementation flexibility needed to clearly invoke the contract-violation handler when
undefined behavior that is not necessarily associated with a contract-checking annotation occurs,
we also include the unknown enumerator to allow for a mechanism to communicate that a violation
is being handled that was triggered from an unspecified or implementation-defined mechanism.

6

Proposal 1.5: The semantic Property

The <contract> header shall provide this enumeration:
namespace std::contracts {
enum class contract_semantic {

enforce
/* To be extended with implementation-defined values and by future standards */

};
}

The type std::contracts::contract_violation shall provide this accessor:
std::contracts::contract_semantic semantic() const noexcept;

Contract checking proposals, including the MVP, hinge on selecting, at build time, a runtime
semantic controlling how detection and enforcement of each individual contract-checking annotation
will be performed. Our research and experience tells us that at least four well-defined semantics are
sound and practical to apply in appropriate circumstances. As of now, the MVP allows for contracts
having two of those semantics, i.e., ignore and enforce, which are selected for all contract-checking
annotations within a program based on the build modes No_eval and Eval_and_abort respectively.
In effect, this choice will result in users observing the results on only enforced contract-checking
annotations in a contract-violation handler. Therefore we can forgoe even specifying the ignore
enumerator as it would currently go unused. We hope that future evolution, however, will result
in satisfying the use cases of those who wish for contract checks having other checked semantics,
such as observe, since knowing which semantic is in effect for a particular violation greatly aids in
programming the violation handler to behave properly.

In particular, when a contract is enforced, we know that the program will not continue normally
after invoking the handler. A handler that wishes to proceed in any way other than program
termination, such as by throwing or invoking longjmp, would thus need to do so after logging and
prior to returning normally. But consider a future kind of contract-checking statement whose only
two viable semantics were observe and ignore. Hard coding the throw or long-jump into the hander
would interfere with the intent of always continuing but sometimes logging. In that case, we would
want to do the long-jump or throw only when the contract check had the enforce semantic.

Moreover, since continuation might result in many violations of the same contract-checking an-
notation, a robust violation handler would not necessarily want to attempt to log a message on
every violation. In general, the diagnostic of the first violation of each contract is very helpful and,
in many cases, only one violation might occur, so skipping that diagnostic entirely is ill advised.
Diagnostics of repeated violations quickly become unhelpful, so best practice is to employ some
form of exponential backoff for logging. This backoff strategy requires the violation handler to count
violations of each observed contract check in a safe and reasonably performant manner. Providing a
light stack trace to see the entire call chain is another useful technique, especially in enforce mode.

In practice, a contract_violation whose semantic has the ignore value will never occur; if we are
not evaluating the contract-checking annotation’s predicate to determine if there is a violation, a
contract-violation handler will never be invoked. The ignore semantic is still, however, one that the
MVP allows contracts to have, and thus we could include it, but with no current programmatic

7

need for it we omit it for now.

Proposal 1.6: The kind Property

The <contract> header shall provide this enumeration:
namespace std::contracts {
enum class contract_kind {

pre,
post,
assert

};
}

The type std::contracts::contract_violation shall provide this accessor:
std::contracts::contract_kind kind() const noexcept;

Whether the contract annotation violated was a precondition, postcondition, or assertion might
guide the form of logging statements produced by a custom contract-violation handler.

Future extensions to Contracts might add new forms of contract checks, such as procedural interfaces7

or class invariants, which could then be distinguished in a contract-violation handler by producing
distinct values of the contract_kind enumeration.

3.2 Contract-Violation Handler

Proposal 2: Contract Violations Invoke a (Potentially) Replaceable Function

When a contract violation is detected, prior to other specified behavior that is associated with
the contract annotation, a function named ::handle_contract_violation that is attached to
the global module will be invoked. This function

• may be noexcept,
• may be [[noreturn]],
• shall return void, and
• shall take a single argument of type const std::contracts::contract_violation&.

Whether this function is replaceable is implementation defined.

Not all platforms, especially those that seek to have a thoroughly auditable security-conscious
deliverable, will want to support a replaceable8 contract-violation handler. We therefore propose that
whether handle_contract_violation is replaceable be unspecified. For platforms where replaceability
is not supported, defining the function shall lead to a link error (a clear and early indication to users
who attempt to replace handle_contract_violation that they will not be able to take advantage of
this portion of the contracts feature). Platforms that do not allow for replacement of the violation
handler are nonetheless encouraged to instead provide to users at build time a finite set of alternative
behaviors that the default violation handler may have.

7See [P0465R0].
8This proposal adds ::handle_contract_violation to the set of replaceable functions the Standard defines,

which currently includes various overloads of the global operator new and operator delete. Just like those

8

Notably, the language and Standard Library provide no mechanism to alter the behavior of the
contract-violation handler at run time. A general feature having that purpose has been deemed by
some to be too large a security risk on many platforms, though a custom violation handler can be
crafted to achieve that effect.

3.3 Default Violation Handler
Proposal 3: Default Violation-Handler Behavior

Recommended practice is that the default violation handler will output diagnostic information
describing the pertinent properties of the provided std::contracts::contract violation
object.

When the violation handler is not replaceable or when no replacement is provided, recommended
practice is to provide a violation handler that outputs useful diagnostic information (such as the
contents of the std::contracts::contract_violation object) to a standard error-reporting channel
for the platform (such as stderr).

Looking forward, should the committee adopt the ability to observe contract violations,9 recom-
mended practice would be that the default violation handler log diagnostics only infrequently, such
as with some form of exponential backoff counter. Logging a diagnostic for each repeated failure of
the same contract-checking annotation can quickly down a system, and observation is intended to
avoid exactly that problem.

Platform capabilities, limitations, and other concerns will, of course, lead to default violation
handlers that do much more or much less. This behavior can range from launching a debugger to
doing nothing at all.

4 Usage Examples
Providing just the hook of a custom violation handler effectively supports many use cases that
would otherwise not be implementable using the MVP.

4.1 Custom Diagnostic Output

The most common use case for custom contract-violation handlers is to log the error to a particular
output API in a particular format:

void ::handle_contract_violation(const std::contracts::contract_violation& violation)
{

std::cerr << "Contract violated at:" << violation.location() << std::endl;
}

functions, the violation-handler function is placed in the global namespace and attached to the global module.
9By observe, we mean “determine if a contract violation is detected by a specific contract-checking annotation and

then, when a violation occurs, invoke the contract-violation handler and, if the handler returns normally, continue
execution immediately following the contract-checking annotation.” See [P1607R1] and the earlier [P1332R0], which
referred to this behavior as check_maybe_continue.

9

Taking into the account the risks and potential rewards, a handler might choose to add stack traces,
the time, some subset of static program state, or other information before allowing the program to
terminate.

Other programs might want to provide feedback to a user more directly:
#include <windows.h>`
void ::handle_contract_violation(const std::contracts::contract_violation& violation)
{

MessageBox(NULL,
(LPCWSTR)L"Contract violation, abort?",
(LPCWSTR)L"Contract violation",
MB_OK);

}

On other platforms, a program might send messages to syslog, use other central logging APIs, store
an event in a diagnostic-event recording system, or perform other environment-specific actions to
record the detection of a contract violation.

4.2 Throw on Contract Violation for Recovery

Rather than aborting, an application might instead choose to handle all contract violations as
exceptions by throwing a known contract-violation-exception type from the handler:

void ::handle_contract_violation(const std::contracts::contract_violation& violation)
{

throw my::contract_violation_exception(violation);
// copies relevant fields from violation

}

Properly supporting this use of contract violations requires code be written with exception safety in
mind, which also goes a long way toward supporting the use case of applications that do not have
the choice to terminate.10

Since we, in general, do not want to make changes to the abstract machine itself, this use of
exceptions does nothing to prevent termination related to noexcept functions further up the stack,
but see Section 5 for more discussion on this topic.

Stack unwinding itself might, however, lead to other contract violations in the destructors of
automatic variables on the stack, showing again that significant risk is involved in using exceptions
as part of handling contract violations. Those who choose to do so must carefully evaluate the
software they write to be sure it will handle such problems properly.

4.3 Propagating Predicate Exceptions

The proper response to an exception being thrown from the evaluation of a contract-checking
annotation’s predicate expression might arguably depend on context. Some applications might have
resource recovery mechanisms to continue executing properly when, say, std::bad_alloc is thrown,

10See [P2698R0].

10

while others might have no viable way to recover from a logical error that was expressed as a thrown
exception (a common if unfortunate practice, such as through the use of std::vector::at).

In most cases when a predicate fails to evaluate cleanly to something contextually convertible to
true, something is amiss and is causing the contract-violation handler to be invoked. For those tasks
that are capable of recovering from a thrown exception, we can easily have a contract-violation
handler propagate the exception that escaped the evaluation of the predicate:

void ::handle_contract_violation(const std::contracts::contract_violation& violation)
{

if (violation.detection_mode() == detection_mode::predicate_exception) {
throw; // rethrow the current exception

}
}

In other cases, users can inspect the particular exception that was thrown and propagate only those
that are known to represent resource acquisition failures from which the application is designed to
recover:

void ::handle_contract_violation(const std::contracts::contract_violation& violation)
{

// First, log appropriately.
if (violation.detection_mode() == detection_mode::predicate_exception) {

std::exception_ptr exception = std::current_exception();
try {

std::rethrow_exception(exception);
} catch (const std::bad_alloc&) {

throw; // rethrow bad_alloc
} catch (...) {

// Return normally to abort on other exception types.
}

}
}

4.4 longjmp for Recovery

One option to avoid aborting without throwing an exception is to use std::longjmp to move control
flow up the stack to a primary event loop and begin recovery. The hard edge on this approach
is that behavior is undefined if the destructors of any non-trivial automatic variables would need
to be invoked when unwinding the stack from the invocation of longjmp to the invocation of the
corresponding setjmp, i.e., if the pair of calls were replaced with a try and a catch.

This undefined behavior manifests in at least two distinct ways. Many platforms simply skip any
of the corresponding destructors, leading to possible resource leaks (or worse, an imbalance in
the invariants that an RAII object, such as a std::lock_guard, was intended to enforce) but then
continuing execution from the point of invocation of setjmp. Other platforms,11 however, will, when
longjmp is invoked, unwind the stack in a manner very similar to what would happen when an
exception is thrown. On platforms where longjmp will unwind the stack, all the same pitfalls that
apply to attempting to recover via throwing an exception, will apply — although it can be expected

11

that even when crossing the boundary of a function with a nonthrowing exception specificattion
unwinding will continue and std::terminate will not be invoked.

Using this longjmp approach requires carefully managing threads of execution and their currently
associated jmp_buf instances, handling the platform-specific behavior when unwinding goes past
non-trivial destructors, and overall structuring an entire application to be prepared to recover in
this manner. The solution proposed in [P2784R0] is very similar to this approach in spirit, with
similar associated benefits and potential pitfalls.

4.5 Performing a Safe Stop

For many purposes program termination is the safest approach to handling software defects — users
will be notified of problems through the auspices of the infrastructure that executed the program,
actions can be taken to recover at a higher level that has not suffered from unknown defects, and
normal computing activity can resume productively.

Some uses, however, do not have the surrounding infrastructure or must avoid making the same
level of demands of a user to make progress. Naive users happily executing a graphical interactive
program will be unlikely to be served well by a program that simply disappears from their desktop
for reasons they cannot readily identify. An embedded system navigating a car on a highway must, as
a whole, continue controlling the car until it is in a safe situation to stop execution — the currently
sleeping human being behind the wheel of the car will certainly appreciate that more than being
given control of a speeding car unexpectedly on a busy highway.

Both of these extremes, and many in the middle, can benefit from a custom contract-violation
handler being able to begin executing complex logic to wind down the system to a state where it is
safe to stop. Recovery of the original processing goals might not be viable, but a minimal set of
functionality can be launched to continue execution until a safe stopping point is reached.

For the client of software with a primary graphical interface this can be as simple as restarting the
graphics-processing event loop within the violation handler in order to present an error dialog to the
user before gracefully shutting down. This minimal runtime state can even give a user the ability to
decide intelligently on what information to retain or discard before finally terminating the program.

A self-driving car, on the other hand, can run much more simplified and well-tested code paths
when the only goal is to bring the vehicle to a halt on the shoulder of the road, out of the way of
passing traffic and ready to wait for the surprised, groggy, yet still alive driver to manually take
control of the vehicle once again.

All of this functionality is well-defined and actionable using a custom contract-violation handler.

4.6 Runtime-Selectable Violation Handler

Enabling runtime selection of the mechanism for violation handling provides an attack vector to
malicious actors that are capable of both (1) updating that mechanism to arbitrary functions
determined by the attacker and (2) forcing a contract violation to be detected after that. Many
of those who deploy C++ software, however, might determine that an attacker capable of those
two steps is likely capable of many other malicious acts, so the risk of enabling runtime selection is

11Such as MSVC; see https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/longjmp.

12

https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/longjmp

acceptable. Put another way, locking the door to the garage doesn’t help if the attacker is already
in your house and just makes unloading your groceries from your car more difficult.

A custom violation handler that simply delegates to a user-specifiable violation handler that can be
altered at run time is straightforward to implement by maintaining a pointer to a violation-handling
function with static storage duration that can be updated by clients as well as accessed by the
violation handler:

class RuntimeViolationHandler
{
public:

using Handler = void(*)(const std::contracts::contract_violation& violation);

private:
static std::atomic<Handler> s_handler

public:
static void invokeViolationHandler(const std::contracts::contract_violation& violation)
{

Handler handler = s_handler.load();
handler(violation);

}
static void setViolationHandler(Handler handler)
{

s_handler.store(handler);
}
static void defaultViolationHandlerconst std::contracts::contract_violation& violation);

// log details to stderr
};

std::atomic<RuntimeViolatinHandler::Handler>
RuntimeViolationHandler::s_handler = &RuntimeViolationHandler.defaultViolationHandler;

void ::handle_contract_violation(const std::contracts::contract_violation& violation)
{

RuntimeViolationHandler::invokeViolationHandler(violation);
}

Runtime selection of the contract-violation handling behavior enables several common use cases
whose benefits depend on the environment in which they might be used:

• Choosing violation handling behavior based on configuration options not identified until after
main has begun

• Dynamically altering what information is gathered by a violation based on what phase a
program is in during its execution, i.e., storing and attempting to save user information only
after the user login process has completed and normal program usage is underway

• Dynamically altering the form of recovery that might be attempted on violation, such as
attempting to recover via thrown exception only after the main program execution loop is
underway

13

Any custom violation handler could certainly modify its behavior based on program state. A generic
runtime-replaceable facility such as this one allows for a library solution to leave the choice of
specific violation-handling mechanics to a higher-level component.

4.7 Negative Testing of Non-noexcept Functions

For non-noexcept functions (though see Section 5), a runtime-selectable violation handler (such as
the one implemented above) allows for effective, practical negative testing of contract checks in a
fully well-defined manner. Negative testing is a tool to verify that contract checks have themselves
been written to properly detect inputs outside of the domain of a function. The negative-testing
algorithm consists of a few steps.

• Execute negative tests only in a build mode where the contract checks under test will be
evaluated and invoke the custom violation handler, such as Eval_and_abort mode on a platform
that allows replacing the violation handler.

• Prior to beginning a negative test, install a violation handler that will throw a known testing-
only exception containing the violation details.

• Inside a try...catch block, execute the function with inputs that are out of bounds.

• The precondition checks on the function should detect the out-of-bounds input and lead to
an immediate exception, unwinding the construction of the function arguments and being
caught by the caller. Importantly, this method is the only one that doesn’t leak when resource-
allocating objects are passed by value.

• The caller then checks that control flow passed through the catch and the function under
test did not return normally. Returning normally from the function or throwing any other
exception type is considered a test failure.

• The caller also checks that the violation handler was invoked from a contract-checking
annotation in an appropriate-seeming location. A violation in a different function called from
within the function under test would indicate that the precondition was not properly checked.

• Once all tests are run, restore the runtime-selectable violation handler to the value it had
before the negative test began.

4.8 Counting Repeated Violations

Should the Contracts facility evolve to enable contracts having the observe semantic it will quickly
become possible for a single contract to be violated a significant number of times in a single program.
Allowing violation handling to throw, and thus potentially return again to the same point of violation
at a later point in execution, also opens up this possibility.

The overhead of producing a diagnostic for each violation when attempting to simply observe the
violations that are otherwise benign, can be too large to enable normal business operations. On
the other hand, accidentally skipping diagnostics for all occurrences of a particular contract check
failing might hide real program defects, throwing the proverbial baby out with the bath water.

To fix these issues, a violation handler can keep a count of how many times a particular contract
check has been violated and only emit a diagnostic for progressively fewer and fewer of them,

14

usually with a strategy such as only logging when the count is a power of 2, an approach known as
exponential backoff .

The hard part of performing this type of backoff hinges on the act of identifying individual contract
checks. The source_location provided on the contract_violation object is a rough approximation,
but is somewhat lacking:

• For contracts on a templated entity the distinct instantiations of the template might be
captured by the function_name property on the source_location, but many compilers choose
to not keep the full text of the function name available to runtime violation handling, so this
might be limited.

• Any particular precondition when violated from distinct call sites should arguably be considered
a distinct defect, so counting is benefited by counting distinct caller/callee separately.

• Multiple checks of the same precondition, such as when invoking the same function in a
complex expression, can occur on the same line from within the same function, leading to
source_location not uniquely identifying the defect.

When a defect is not uniquely identified there are two potential fallouts:

1. Diagnosing and fixing the problem can be greatly hindered by needing to narrow down the
specific control flow that led to the defect, or worse not even realizing that the defect occurred
on a path distinct from the one where a fix was applied.

2. When defects occur on multiple paths, exponential backoff logging can suppress some of them
to the point where it can be improperly concluded that there is no defect along the path where
diagnostics were not emitted.

Macro-based contract-checking facilities often use a static local variable to track the count where
the macro is placed, which solves some of these problems but, as with the rest of the macro-based
facility’s uses, does not allow for capturing the caller location on precondition checks. A contract-
violation handler can use the source_location object’s properties as a key in an associative container
to achieve the same level of tracking as this proposal.

A future proposal that makes observe a usable contract-checking semantic in the language would
be well served to also include the ability to, on a contract_violation object, expose a unique
identifier for the contract-checking annotation that was violated. The type of this property should
be something suitable to use as the key in an associative container while also facilitating easy
generation of a unique identifier by the platform. Generating such a unique value can be done by
taking the address of the instructions that execute the contract_violation process. This would allow
for distinct counting of separate inlined versions of the same function in different contexts, which
are invariably distinct defects. To facilitate this uniqueness, the type of this property must thus be
an integral type at least as large as std::uintptr_t.

Keeping an opaque identifier would leave it, like many of the other properties of the contract_violation
object, up to compiler QoI how accurate and useful the identifier is. Careful wording would need to
be constructed to at least guarantee uniqueness as effective as the source_location is, but leave
more granularity up to the compiler.

15

5 Throwing
Exception propagation from the evaluation of a contract-checking annotation is, unsurprisingly, in
strong conflict with the use of noexcept. The Lakos Rule,12 which proscribed the use of noexcept on
functions with narrow contracts, i.e., those having one or more preconditions, was invented and
applied to all of the C++11 Standard Library precisely to address this issue. Once such an exception
escaping from a violation handler begins to propagate up the call chain, any intervening noexcept
function that fails to catch the exception will force termination. We provide no general solution
here to the problems that arise when a throwing handler is invoked for a failing contract check in a
noexcept(true) function — irrespective of whether it resides on the declaration or within the body
of such a function.

When the evaluation of a precondition on a noexcept function causes an exception to be thrown, we
do have a choice as to whether to consider that exception to be happening prior to the invocation of
the function or, as is more commonly represented, as the first operation of the function’s body. If
we choose to define the preconditions as being outside the purview of the function itself and thus
not subject to the noexcept guarantee, we must then answer a fundamental question about what
the noexcept operator does when applied to such a function.13 Almost any answer we can think of
would be surprising in one way or another.

• Return false in build modes where a precondition check may be evaluated.

• Return true or false depending on the (link-time) noexcept property of the installed violation
handler.

• Return true yet allow the exception to propagate, breaking some ability to reason about the
exception safety of the invoking code.

• Return false independently of the build mode, even though the function itself is marked
noexcept.

All of these concerns fairly demand careful consideration prior to making a decision on how contract
checks relate to the noexcept boundary of a function.14

For functions that violate the Lakos rule, one’s ability to either (1) test their precondition checks
using the negative testing algorithm described above (see Section 4.7) or (2) attempt to recover
using any form of exception-based contract-violation handling (see Section 4.3) is severely hampered
by any choice that does not allow exceptions emitted by a contract-violation handler to propagate
from the invocation of a noexcept function. Therefore, we still strongly recommend that the Lakos
rule be followed for any narrow-contract functions that do not throw, as doing otherwise actively
conflicts with several of the use cases we have presented here.

12See [N3279].
13The same answer should also coincide with whether the type of the function itself retains the noexcept(true)

qualifier. This can impact, for example, the ability to assign the address of the function to a function pointer with a
noexcept function type, as well as the type that would be deduced from the function when it is used as input into
template argument deduction.

14Because some of these options lie, and others result in fundamental changes to control flow and program behavior
outside of the contract-checking itself, we strongly recommend that all checking of preconditions and postconditions
remain within the purview of the noexcept guarantee of a function, and will elaborate on that in a followup paper —
[P2834R0].

16

6 Wording Changes
The current MVP15 does not contain suggested wording, somewhat by design. A previous paper,
[P2388R4], contains standard wording for an earlier iteration of the MVP, and the final wording for
the MVP can be expected to evolve from that.

In [dcl.correct.test], introduced in [P2388R4], add a new paragraph after paragraph 2:

The contract-violation handler of a program is a function of type “opt[[noreturn]]
optnoexcept function of (lvalue reference to const std::contracts::contract_violation)
returning void” named ::handle_contract_violation. Whether the contract-violation
handler is replaceable is implementation defined. (A C++ program may define a function
with this name and signature and thereby displace the default version defined by the im-
plementation.) [Note: The definition of a contract-violation handler on an implementation
where the contract-violation handler is not replaceable will result in multiple definitions
of the contract-violation handler and thus be ill formed. —end note]

Recommended practice: The default contract-violation handler provided by the implemen-
tation should produce diagnostic output that suitably formats the most relevant contents
of the std::contracts::contract_violation object and then return normally.

Note: The existing wording in [P2388R4] already references the contract-violation handler without
further detail, specifying that it is invoked for an unsuccessful enforced correctness annotation test.

Add a new section, [support.contract], after section [support.coroutine]:

Contract-violation handling [support.contract]

Header <contract> synopsis [contract.syn]

The header <contract> defines a type for reporting information about contract violations
generated by the implementation.

namespace std::contracts {
enum class contract_violation_detection_mode : *unspecified*;
enum class contract_semantic : *unspecified*;
enum class contract_kind : *unspecified*;
class contract_violation;

}

Enum class contract_violation_detection_mode
[support.contract.violation.detection.mode]

Enum class contract_violation_detection_mode
[tab:support.contract.violation.detection.mode]

15See [P2521R3].

17

Name Meaning
unknown Unknown reason for violation handler invoca-

tion
predicate_false Contract predicate returned false
predicate_exception Unhandled exception evaluating contract pred-

icate
predicate_undefined_behavior Contract predicate would have undefined be-

havior when evaluated

Enum class contract_semantic [support.contract.semantic]

Enum class contract_semantic [tab:support.contract.semantic]

Name Meaning
enforce End program on violation

Enum class contract_kind [support.contract.kind]

Enum class contract_kind [tab:support.contract.kind]

Name Meaning
pre A [[pre]] contract annotation
post A [[post]] contract annotation
assert An [[assert]] contract annotation

Class contract_violation [support.contract.cviol]
namespace std::contracts {

class contract_violation {
public:

const char* comment() const noexcept;
contract_violation_detection_mode detection_mode() const noexcept;
contract_kind kind() const noexcept;
source_location location() const noexcept;
contract_semantic semantic() const noexcept;

};
}

The class contract_violation describes information about a contract violation generated
by the implementation.

const char* comment() const noexcept;

Returns: Implementation-defined text describing the predicate of the violated con-
tract.

contract_violation_detection_mode detection_mode() const noexcept;

Returns: The manner in which this contract violation was detected.

18

contract_kind kind() const noexcept;

Returns: The kind of contract annotation whose check detected this contract viola-
tion.

source_location location() const noexcept;

Returns: The implementation-defined source code location where this contract
violation was detected.

contract_semantic semantic() const noexcept;

Returns: The runtime semantic chosen (at build time) for the contract annotation
that has been violated.

7 Conclusion
With growing concerns over the MVP’s severely limited ability to meet the needs of many existing
C++ users,16 SG21 will inevitably be compelled to consider various proposals to address each of
those individual concerns. The well-proven approach of supporting a user-defined contract-violation
handler has been shown to address these use cases clearly, effectively, and without the need for
excessive core-language specification efforts. Although a contract-violation handler does not solve all
problems, the new information about the expectations of the MVP clearly indicates that we should
reconsider this flexible solution, which would immediately unleash real-world use of the language
feature SG21 is striving to produce.

Acknowledgements
Thanks to John Lakos, Bjarne Stroustrup, Tom Honermann, Andrzej Krzemieński, Ville Voutilainen,
and Gašper Ažman for feedback on the earlier revisions of this paper.

Bibliography
[bde14] “Basic Development Environment”. Bloomberg

https://github.com/bloomberg/bde/

[N3279] A. Meredith and J. Lakos, “Conservative use of noexcept in the Library”, 2011
http://wg21.link/N3279

[N4378] John Lakos, Nathan Myers, Alexei Zakharov, and Alexander Beels, “Language Support
for Contract Assertions”, 2015
http://wg21.link/N4378

[P0465R0] Lisa Lippincott, “Procedural Function Interfaces”, 2016
http://wg21.link/P0465R0

16See [P2698R0].

19

https://github.com/bloomberg/bde/
http://wg21.link/N3279
http://wg21.link/N4378
http://wg21.link/P0465R0

[P0542R5] J. Daniel Garcia, “Support for contract based programming in C++”, 2018
http://wg21.link/P0542R5

[P1332R0] Joshua Berne, Nathan Burgers, Hyman Rosen, and John Lakos, “Contract Checking
in C++: A (long-term) Road Map”, 2018
http://wg21.link/P1332R0

[P1429R3] Joshua Berne and John Lakos, “Contracts That Work”, 2019
http://wg21.link/P1429R3

[P1607R1] Joshua Berne, Jeff Snyder, and Ryan McDougall, “Minimizing Contracts”, 2019
http://wg21.link/P1607R1

[P1639R0] Corentin Jabot, “Unifying source_location and contract_violation”, 2019
http://wg21.link/P1639R0

[P2388R4] Andrzej Krzemieński and Gašper Ažman, “Minimum Contract Support: either No_-
eval or Eval_and_abort”, 2021
http://wg21.link/P2388R4

[P2521R3] Andrzej Krzemieński, Gašper Ažman, Joshua Berne, Bronek Kozicki, Ryan McDougall,
and Caleb Sunstrum, “Contract support – Record of SG21 consensus”, 2023
http://wg21.link/P2521R3

[P2698R0] Bjarne Stroustrup, “Unconditional termination is a serious problem”, 2022
http://wg21.link/P2698R0

[P2751R0] Joshua Berne, “Evaluation of Checked Contracts”, 2023
http://wg21.link/P2751R0

[P2784R0] Andrzej Krzemieński, “Not halting the program after detected contract violation”,
2023
http://wg21.link/P2784R0

[P2834R0] Joshua Berne and John Lakos, “Semantic Stability Across Contract-Checking Build
Modes”, 2023
http://wg21.link/P2834R0

20

http://wg21.link/P0542R5
http://wg21.link/P1332R0
http://wg21.link/P1429R3
http://wg21.link/P1607R1
http://wg21.link/P1639R0
http://wg21.link/P2388R4
http://wg21.link/P2521R3
http://wg21.link/P2698R0
http://wg21.link/P2751R0
http://wg21.link/P2784R0
http://wg21.link/P2834R0

	1 Introduction
	2 Motivation
	3 Proposal
	3.1 An Extensible contract_violation Value Type
	3.2 Contract-Violation Handler
	3.3 Default Violation Handler

	4 Usage Examples
	4.1 Custom Diagnostic Output
	4.2 Throw on Contract Violation for Recovery
	4.3 Propagating Predicate Exceptions
	4.4 longjmp for Recovery
	4.5 Performing a Safe Stop
	4.6 Runtime-Selectable Violation Handler
	4.7 Negative Testing of Non-noexcept Functions
	4.8 Counting Repeated Violations

	5 Throwing
	6 Wording Changes
	7 Conclusion

