
Stroustrup Call Syntax N4174

WG-N4174
2014-10-11

Call syntax: x.f(y) vs. f(x,y)
Bjarne Stroustrup (bs@ms.com)

Abstract
This note explores the possibility of providing a uniform call syntax by giving member functions
preference over non-member functions. Offering the choice between the x.f(y) and f(x,y) notations with
different meanings means that different people will chose differently for their function definitions, so
that users have to know the choice and write calls appropriately. This gives users more opportunities for
making mistakes, makes it harder to write generic code, and has led to replication when people define
both a member and a non-member function to express the same thing. I suggest that providing different
meanings to the two syntaxes offers no significant advantage.

Several suggestions/proposals for dealing with this have appeared over the years (for example
[Glassborow,2004], but most were not documented in formal documents). Operators, such as ==, can be
used with a uniform notation (e.g., x==y) independently of whether they are defined as members or
non-members. Also, the rules for range-for are based on the idea to first look for a member function
x.begin() and if one isn’t found then look for a nonmember function begin(X). Doing so generally would
give a bit more control to class writers and simplify most common uses. This note explores this idea
further.

This is a discussion of alternatives with a suggestion at the end. It is obviously not a complete and
finished proposal.

The basic suggestion is to define x.f(y) and f(x,y) to be equivalent. In addition, to increase compatibility
and modularity, I suggest we explore the possibility of ignoring uncallable and inaccessible members
when looking for a member function (or function object) to call.

1 Introduction
Consider first a vague idea:

x.f(y) means

1. First try x.f(y) –does x’s class have a member f? If so try to use it
2. Then try f(x,y) – is there a function f? If so, try to use it
3. otherwise error

f(x,y) means

1

Stroustrup Call Syntax N4174

1. First try x.f(y) – does x’s class have a member f? If so try to use it
2. First try f(x,y) – is there a function f? If so, try to use it
3. otherwise error

Does f(x,y) mean exactly the same as x.f(y)? That depends on the exact formulation of the idea above.

Ideally, we would have only one function call syntax, and ideally, that would be the conventional
functional syntax, f(x,y). The x.f(y) notation “favors” the first argument and suggests an asymmetry that
exists some but not all cases: consider x.sqrt() and x.operator==(y). The functional (mathematical)
notation is far older and more general than the object-oriented dot notation. The dot notation is a result
of single-dynamic dispatch in Simula and successor languages (such as C++). However, once we consider
multimethods, the symmetrical functional notation become appealing even when relying on dynamic
dispatch ([Stroustrup,1994], [Pirkelbauer,2007]). For example, I prefer intersect(s1,s2) over
s1.intersect(s2).

For compatibility, we must support both notations, but unless one syntax provides something
fundamental that the other does not, ideally the meaning of x.f(y) would be identical to that of f(x,y).

1.1 What does x.f(y) mean?
The first case, x.f(y), appears to be the simplest. First, just apply the current rules and if that would lead
to a compile-time error, try f(x,y). For example:

struct X {
 int f(int);
};

int f(X&,int);
X x;
x.f(2); // OK: call X::f(int)

int g(X&,int);
x.g(2); // OK: call g(x,2);

A member function can hide a nonmember function that apparently is better match. For example:

struct X {
 int f(double);
};

int f(X&,int);
x.f(2); // OK: x.f(double(2)); not f(x,2)

One way to avoid such “hijacking” by a member function is to generate an overload set from member
and nonmember functions, and pick the best match. However, if that is done, the nonmember function
could be seen as doing the hijacking – that would be most surprising to someone used to the current
rules and there is an opportunity for silent change of meaning compared to all earlier versions of C++.

2

Stroustrup Call Syntax N4174

Furthermore, member functions are often used specifically to limit scope (limit the overload set), so not
giving priority to member functions would take away a significant and widely used feature.

Giving priority to members respects people’s naïve/historical expectations from the syntax used and
also gives the writer of a class the ability to control what needs to be controlled. The only new aspect is
that a call x.f(y) will work whenever the writer of x’s class has not expressed an interest in the name f,
but the writer of the surrounding scope has.

1.2 Member type and visibility
So far, I have considered only public function members. What about private members? Data members?
Member function objects? Member types? static member functions?

The most compatible solution would be to consider them all, exactly as today. That would make the
proposal a pure extension. However

• Should a data member hide a perfectly good function?
• Should a member type hide a perfectly good function?
• Should a private member hide a perfectly good function?
• Should a member that cannot be called with the given arguments hide a perfectly good

function?

Considering only, the x.f(y) notation, “yes: members hide nonmember functions” would be an
acceptable (though not ideal) answer.

class X {
 int f(int);
public:
 int g;
};

int f(X,int);
X x;
f(x,2); // error: X::f() Is private

int g(X,int);
g(x,2); // error: X::g is not a function

This mirrors other lookup rules (lookup before access check and type check) and makes the answer
independent of whether that call is done from within the class or outside it. For example:

int g(X,int);

class X {
 int f(int) { x.g(2); } // error: X::g is not a function
public:
 int g;

3

Stroustrup Call Syntax N4174

};

However, having a call to an accessible function masked by a non-function or a private member is at
least surprising. Fundamentally, it makes calls that would otherwise work be vulnerable to changes in
the implementation of a class. This becomes more serious when we start considering the f(x,y) notation
(§1.3).

Public member function objects are perfectly callable under the current rule. For example:

struct Op {
double operator()(double d);

};

struct X {
 Op f;
};

int f(X,int);
X x;
x.f(1); // OK: call X::f
x.f(1.1); // OK: call X::f

However, we still cannot overload a function with a function object

struct X {
 int f(int);
 Op f; // error: can’t overload
};

That may be a separate problem. The suggestion at the end of this paper does not try to address this.

Finally, consider the possibility of a member with a “wrong” argument type:

struct X {
 int f(string);
};

int f(X,int);
X x;
f(x,2); // error: X::f() requires a string argument

I think this is the correct resolution (independently of how private and noncallable members are
handled). Bypassing/ignoring functions that are not callable with a given argument could lead to quite
brittle code.

1.3 What does f(x,y) mean?
Now consider f(x,y). We could

4

Stroustrup Call Syntax N4174

1. give priority to a non-member function
2. give priority to a member function
3. do overload resolution across the member and non-member scope

Alternative [1], nonmember priority, would be backward compatible and respect people’s
naïve/historical expectations from the syntax. In addition, it would allow member functions to be
accessed without the special dot notation. For example:

struct X {
 int f(double);
 int g;
};

int f(X&,int);
X x;
f(x,2); // OK: call x.f(2)

int g(X&,int);
g(x,2); // OK: call g(x,2)

int h(X&,int);
h(x,2); // OK: calls nonmember h()

Alternative [2], member priority, gives the designer of a class novel control of the meaning of functions.
Basically, f(x,y) becomes equivalent to x.f(y) for every member f of x’s class. For example:

struct X {
 int f(double);
 int g;
};

int f(X&,int);
X x;
f(x,2); // OK: call x.f(double(2))

int g(X&,int);
g(x,2); // error: tries to call x.g(2)

int h(X&,int);
h(x,2); // OK: calls nonmember h()

Note the conversion to double. Member priority allows the class to “hijack” using a function that would
be an inferior match under overload resolution. With member priority, x.f(y) would have the same
effect as a nonmember f(x,y). As with x.f(y), we must consider if we can modify the lookup rules to
exclude noncallable members. For f(x,y), that would be more significant.

5

Stroustrup Call Syntax N4174

Alternative [3], overload resolution, simply adds a member function to the overload set considered. For
example:

struct X {
 int f(double);
 int g;
};

int f(X&,int);
f(x,2); // OK: call f(x,2) not x.f(double(2))

int g(X&,int);
g(x,2); // error: cannot overload function and nonfunction

Now the class can “hijack” the call only if it is the best match. However, we might modify the overload
resolution rules to exclude noncallable names and get

g(x,2); // OK: call nonmember g()

Further, we would have to decide how to handle a function object. For example:

 struct Op {

double operator()(double d);
};

struct X {
 Op f;
};

int f(X,int);

X x;
x.f(1); // overload? Call nonmember f?

Given lambdas, it may not be easy to exclude function objects from consideration.

1.4 What about p->f()?
If x.f() can call f(x), can p->f() call f(p)? Yes, and f(p) can call p->f().

1.5 Tool support
Herb Sutter ([Sutter,2014]) and others point out that an important aspect of x.f(y) is that it limits the
scope of f to x’s class (incl. base classes). The reason that x.f(x) is easier to deal with than f(x,y) is that
the scope of f() is designated (by x) and limited (to the members of x’s class). Unfortunately, that scope
is also closed. That problem is handled by looking for f() in the current scope of x.f() after looking into x.
That’s two lookups. For f(x,y), we also need to look at two scopes, the same two scopes as for x.f(). With
the suggestion of member priority, we even have to look into those scopes in the same order.

6

Stroustrup Call Syntax N4174

As Herb points out in [Sutter,2014], a tool can look into x’s scope and find all possible members after
just x. and after seeing x.f it can find all fs. Conversely, after f(, a tool can find the full set of nonmember
fs and after f(x it can see both scopes and determine the full set of possible fs. Herb and others consider
this difference in order significant. I agree that the members are more important that the nonmembers
in that the members take priority. However, my guess is that the problems with the two notations are
complementary and manageable. Also, I consider the f(x,y) notation fundamental and unavoidable.

2 Evaluation
Here, I’ll look at the call syntax and the possible impact of a change in lookup rules to lessen the impact
of class implementation details on calls.

2.1 x.f(y)
I think we have to give members priority when the x.f(y) notation is used. Overloading isn’t sufficiently
compatible and we need a way to say “give me the member function (if it exists).” For x.f(y), member
priority is a compatible extension: it turns previously illegal examples into valid code without changing
the meaning of existing programs.

For x.f(y), we can choose between considering all names in a class (as currently done) and ignoring
nonaccessible and/or noncallable members. Either choice would make some previously illegal programs
valid. That would be compatible, and convenient for programmers. The latter choice would increase
modularity and make calls less vulnerable to changes in a class’ implementation. It would also require
work on lookup rules (§2.3).

Unfortunately, choosing the (current) fully compatible solution with no changes to lookup rules of f(x,y),
gives only an illusion of stability. If x.f(y) handles more real world cases than current or “modified” f(x,y)
(is “more generic”), the pressure to rewrite generic code in terms of x.f(y) becomes irresistible.
However, when that is done, generic code becomes vulnerable to noncallable and inaccessible
members. The programmer will then be faced with a most unpleasant choice between generality
(relying on x.f(y)’s novel ability to invoke both member and nonmember functions) and protection
against implementation details of classes (relying on the current meaning of f(x,y)).

2.2 f(x,y)
Choosing a meaning for f(x,y) is less obvious:

• Alternative [1], nonmember priority, is a pure extension, but allows a nonmember function to
hide even a perfect match in the class. The designer of the class has no control over the meaning
of a call using the conventional function call notation (like today). This is the simplest and most
compatible solution. It does, however, differ from the (current) resolution of operators and for
range-for. It also makes f(x,y) differ from x.f(y).

• Alternative [2], member priority, makes f(x,y) and x.f(y) equivalent. The designer of a class has
strong control of the meaning of f(x,y). This is the rule used for operators, such as ==, today, and
for begin() and end() in a range-for loop.

7

Stroustrup Call Syntax N4174

• Alternative [3], overload resolution, gives the most fine-grained resolution, but can give a class
writer a false sense of being in control. It is also a bit more work to specify than alternative [2].
We would have to (somehow) exclude non-function members and deal with the possibility of
overloading a function object and a function.

Consider the problem from the point of view of a programmer who would prefer not to have to know
whether a class designer uses a member or a nonmember function to implement an idea. In particular,
consider the plight of the writer of a generic algorithm. Unless we modify the lookup rules, x.f(y) and
alternative [2] of f(x,y) allow private or data members in a class to block the use of a nonmember
function f. I do not know how serious a problem this is.

By using the (for generic algorithms) conventional f(x,y) notation, we have to either abandon hope of
using member functions, use x.f(y) systematically, or choose among the three alternatives.

• Alternative [1], nonmember priority, leaves us open to having a best match ignored. That best
match would often be the function or function object most explicitly associated with the class
(as a member). We would, like currently, have to duplicate functions (one member plus one
nonmember) to ensure consideration of a member. Note that virtual functions must be
members and that the most fundamental functions are often members.

• Alternative [2], member priority, leaves us open to current programs changing meaning when a
member is chosen over a nonmember. One would hope that (as is common) f(x,y) means the
same as x.f(y) when f() is a public member, but that cannot be guaranteed. Also a currently valid
f(x,y) could become an error because of a private or noncallable members of x’s class. Note that
these problems can occur only for the first argument of a nonmember function, rather than all
arguments. To minimize the second problem, I think that we would have to choose to ignore
private and noncallable members when looking for a nonmember function.

• Choosing alternative [3] (overload resolution) would force us to solve the overloading of
functions and function object problem.

For many uses, I prefer the (most traditional) functional notation f(x,y). For example, I would hate to
have to write x.sqrt() rather than sqrt(x) to guard against someone defining sqrt() as a member of some
class.

2.3 Vulnerability
By using a lookup/selection rule that do not consider inaccessible and non-callable members, we would
minimize the “vulnerability” of the call mechanism to “irrelevant implementation details.” For example:

struct X {
 int f(double);
 int g;
private:
 int h(int);
};

8

Stroustrup Call Syntax N4174

int f(X&,int);
X x;
f(x,2); // OK: call x.f(double(2)) – novel resolution

int g(X&,int);
g(x,2); // OK: call g(x,2) - novel resolution: ignore X::g

int h(X&,int);
h(x,2); // OK: call h(x,2)

Unfortunately, this would be novel and may cause implementation problems.

The resolution of x.f(2) points to the most serious potential problem with considering for f(x,y)
equivalent to x.f(y): silent selection of a different function. I cannot quantify how real or how serious
this problem is. To become a problem requires an x such that

• x.f(arguments) and f(x,arguments) are both valid today and
• the meaning of the member and nonmember functions are not identical and
• the member function call isn’t an equally good or better resolution of the call.

By the latter, I primarily refer to the (many) cases where people today have added a forwarding function
to get the effect I am proposing. For example:

 struct Container {
 Iterator begin1();
 Iterator begin2();
 // …
 };

 Iterator begin1(Container& c) { return c.begin1(); }

 Container xxx;
 auto p = begin1(xxx); // novel resolution
 auto q = xxx.begin2(); // as ever

We need to look at some significant amount of code to see if this is viable.

We should seriously consider changing the lookup rules to ignore inaccessible and uncallable members.
Something like this must be seriously being considered for modularity anyway.

If x.f(y) handles more real world cases than f(x,y) (is “more generic”), the pressure to rewrite generic
code in terms of x.f(y) becomes irresistible. However, when that is done, generic code becomes
vulnerable to noncallable and/or inaccessible members. Modifying the meaning of x.f(y), but not f(x,y)
will not allow us to escape this dilemma.

I instituted the current rule, “first select the best member, then check if it is usable”, for what seemed
like good reasons at the time (1983 or so) and it has served us reasonably well. I knew that there was no

9

Stroustrup Call Syntax N4174

perfect solution, but a decision had to be made. The language and the pressure on the rules are
different today. We should at least consider a change.

The main effect of a change would still be to make previously invalid examples work. That’s compatible
in that it turns previous errors into valid code. For example, a private function in a derived class
would/might no longer hide a viable alternative in a base class:

struct Base {
 void f(double);
};

class B : public Base {
public:
 void g(double);
 void h();
private:
 void g(int);
 void f(int);
};

void current(D& d) // current rules
{
 d.f(1); // error: tries to call D::f(int)
 d.g(1); // error: tries to call D::g(int)
}

void alternative(D& d) // an alternative to consider
{
 d.f(1); // OK: ignores D::f(int) and calls Base::f(double)
 d.g(1); // OK: ignores D::g(int) and calls D::g(double)
}

This example is meant to illustrate the difficulties of a change. However, if we changed the rules in
general, rather than just for x.f(y), we should be able construct examples that would give different
answers. So far, I have not found any. However, it is easy to construct examples where a call from a
member (or friend) resolves to something different from a call from a nonmember. For example:

void Derived::h(D& d) // compare to alternative()
{
 d.f(1); // OK: calls D::f(int)
 d.g(1); // OK: calls D::g(int)
}

Avoiding such differences was one of the reasons for the current rule. Note that such differences may be
“odd” but they do not make the change I’m considering – with the hope of feedback – incompatible. In
this case it changes an error into a resolution that might be considered surprising.

10

Stroustrup Call Syntax N4174

If the change in lookup rules is viable it would help us achieve x.f(y)==f(x,y), which would be a major
simplification – especially for the writers of generic code. It may open the door for multiple dispatch
([Pirkelbauer,2007)] and for a uniform notation for dynamic and static dispatch.

3 Conclusion
I think a proposal like this is viable (though obviously it needs more work). Of the alternative, we must
choose member-priority for x.f(y). For f(x,y), I suggest that member priority is by far the best answer
yielding x.f(y)==f(x,y). We should seriously consider if we can ignore uncallable and/or inaccessible
members when looking for functions in a class.

4 References
[Glassborow,2004] F. Glassborow: Uniform Calling Syntax (Re-opening public interfaces). N1585.

[Stroustrup,1994] B. Stroustrup: The Design and Evolution of C++. Addison-Wesley. 1994.

[Pirkelbauer,2007] P. Pirkelbauer, Y. Solodkyy, and B. Stroustrup: Open Multi-Methods for C++.
Proc. ACM 6th International Conference on Generative Programming and

[Sutter,2014] H. Sutter: Unified Call Syntax. N40xx.

5 Acknowledgements
Thanks to the many who have considered and discussed this problem with me over the years, notably
Gabriel Dos Reis, Francis Glassborow, Herb Sutter, and Andrew Sutton.

11

	Call syntax: x.f(y) vs. f(x,y)
	Bjarne Stroustrup (bs@ms.com)

	Abstract
	1 Introduction
	1.1 What does x.f(y) mean?
	1.2 Member type and visibility
	1.3 What does f(x,y) mean?
	1.4 What about p->f()?
	1.5 Tool support

	2 Evaluation
	2.1 x.f(y)
	2.2 f(x,y)
	2.3 Vulnerability

	3 Conclusion
	4 References
	5 Acknowledgements

