
Atomic Smart Pointers, rev. 1 
Herb Sutter 

 

 

This is a revision of N4058 to apply SG1 feedback in Redmond to rename atomic<*_ptr<T>> to 

atomic_*_ptr<T>, require default initialization to null, and add proposed wording. 

 

Contents 

1. Motivation ................................................................................................................................................. 2 

1.1. Problem .............................................................................................................................................. 2 

1.2. Motivating example for atomic_unique_ptr<T>: Producer-consumer handoff ......................... 2 

1.3. Motivating example for atomic_shared_ptr<T>: ABA + robustness + efficiency ....................... 3 

1.4. Motivating example for atomic_weak_ptr<T>: Swinging a weak_ptr ........................................ 4 

2. Proposal .................................................................................................................................................... 4 

2.1. Add atomic_shared_ptr<T> ........................................................................................................ 4 

2.2. Deprecate [util.smartptr.shared.atomic] ........................................................................................... 5 

2.3. Add atomic_weak_ptr<T> ............................................................................................................. 5 

2.4. Add atomic_unique_ptr<T> ........................................................................................................ 5 

3. Proposed Wording .................................................................................................................................... 5 

3.1. Changes to 29.2 .................................................................................................................................. 5 

3.2. Changes to 29.6 .................................................................................................................................. 5 

4. Q&A ........................................................................................................................................................... 7 

4.1. Q: Why not use the specialization syntax atomic<*_ptr<T>>? A: Because of SG1 direction and 

good technical arguments. ....................................................................................................................... 7 

4.2. Q: What about user-defined smart pointers? A: Not in scope for this proposal. .............................. 7 

4.3. Q: Would allowing atomic<non-POD> enable atomic<any-smart-pointer>? A: Alas, no..... 8 

4.4. Q: Well, could we still allow atomic<non-POD>, in addition to this proposal? A: Sure. ................ 8 

5. Appendix ................................................................................................................................................... 9 

6. Acknowledgments ................................................................................................................................... 10 

7. References .............................................................................................................................................. 10 
 

 

  

Document #: N4162 

Date: 2014-10-06 

Reply to: Herb Sutter 

 (hsutter@microsoft.com) 



1. Motivation 

1.1. Problem 
We encourage that modern C++ code should avoid all uses of owning raw pointers and explicit delete. 

Instead, programmers should use unique_ptr and shared_ptr (with weak_ptr), as this is known to 

lead to simpler and leak-free memory-safe code. This is especially important when lifetimes are unstruc-

tured or nondeterministic, which arises especially in concurrent code, and it has long been well-known 

that the smart pointers would be useful there; for an example, see [1]. 

Unfortunately, lock-free code is still mostly forced to use owning raw pointers. Our unique_ptr, 

shared_ptr, and weak_ptr would directly benefit lock-free code just as they do regular code (see next 

section), but they are not usable easily or at all in lock-free code because we do not support atomic forms 

of these pointers. Specifically: 

 For shared_ptr we at least have the free functions in [util.smartptr.shared.atomic]. However, 

as pointed out in [2] and summarized later in this paper, these free functions are strictly inferior 

in consistency, correctness, and performance to an atomic_shared_ptr<T> type. 

 For unique_ptr and weak_ptr we have nothing. 

1.2. Motivating example for atomic_unique_ptr<T>: Producer-consumer handoff 
Consider a producer that creates a data structure and atomically hands it off to a consumer using a single 

atomic store operation. Note that the red code is now frowned upon in general as “not modern safe C++.” 

atomic<X*> p_root{nullptr}; // need init depending on p_root’s scope 

void producer() { 

    auto temp = make_unique<X>(); 

    load_from_disk_and_store_in( *temp ); // build data structure 

    p_root = temp.release();              // atomically publish it 

} 

In any non-atomic case, we would say that this owning X* and explicit new and delete should be replaced 

with a unique_ptr<X> and make_unique<X>. Here we can use unique_ptr “partway”—only locally 

in the function, and then we immediately lose the exception safety and automated lifetime for the rest of 

the world and the rest of the lifetime of the X object as soon as we pass it to the consumer. 

If we had atomic_unique_ptr<T> we could (and should) write the following equivalent code that is 

safer, no slower, and less error-prone because we can directly express the unique ownership semantics 

including ownership transfer: 

atomic_unique_ptr<X> p_root; 

void producer() { 
    auto temp = make_unique<X>(); 

    load_from_disk_and_store_in( *temp ); // build data structure 

    p_root = move(temp);                  // atomically publish it 

} 

This righteous code should be supported. 



1.3. Motivating example for atomic_shared_ptr<T>: ABA + robustness + efficiency 
“Everyone knows” (at least, I thought I knew until recently) that portable C++ code cannot express many 

simple high-performance lock-free data structures, such as a concurrent list or stack that allows concur-

rent insert and erase operations, because of the ABA problem. Even prominent experts commonly teach 

that the answer is to resort to contortions like hazard pointer libraries, or resort to as-yet-nonstandard 

extensions like garbage collection or transactional memory. 

Yet “everyone” is mostly wrong, because [util.smartptr.shared.atomic] already makes it possible for port-

able C++ code to avoid the ABA problem (as long as there are no unbroken cycles). See the Appendix for 

a more complete example of a lock-free stack implemented as a singly linked list without ABA issues in 

portable C++, thanks to atomic use of shared_ptrs. 

However, such code is forced to use the free functions in [util.smartptr.shared.atomic], and those are 

strictly inferior in consistency, correctness, and performance to a real atomic_shared_ptr<T>. The 

fundamental design flaw is that a normal shared_ptr and an “atomic shared_ptr” are inherently dif-

ferent types, and therefore should be expressed distinctly; and then the latter should have its natural 

spelling consistent with the existing atomic types. 

Consistency. As far as I know, the [util.smartptr.shared.atomic] functions are the only atomic operations 

in the standard that are not available via an atomic type. And for all types besides shared_ptr, we 

teach programmers to use atomic types in C++, not atomic_* C-style functions. And that’s in part be-

cause of... 

Correctness. Using the free functions makes code error-prone and racy by default. It is far superior to 

write atomic once on the variable declaration itself and know all accesses will be atomic, instead of hav-

ing to remember to use the atomic_* operation on every use of the object, even apparently-plain reads. 

The latter style is error-prone; for example, “doing it wrong” means simply writing whitespace (e.g., head 

instead of atomic_load(&head)), so that in this style every use of the variable is “wrong by default.” If 

you forget to write the atomic_* call in even one place, your code will still successfully compile without 

any errors or warnings, it will “appear to work” including likely pass most testing, but will still contain a 

silent race with undefined behavior that usually surfaces as intermittent hard-to-reproduce failures, of-

ten/usually in the field, and I expect also in some cases exploitable vulnerabilities. These classes of errors 

are eliminated by simply declaring the variable atomic, because then it’s safe by default and to write the 

same set of bugs requires explicit non-whitespace code (sometimes explicit memory_order_* argu-

ments, and usually reinterpret_casting). 

Performance. atomic_shared_ptr<> as a distinct type has an important efficiency advantage over the 

functions in [util.smartptr.shared.atomic]—it can simply store an additional atomic_flag (or similar) for 

the internal spinlock as usual for atomic<bigstruct>. In contrast, the existing standalone functions are 

required to be usable on any arbitrary shared_ptr object, even though the vast majority of 

shared_ptrs will never be used atomically. This makes the free functions inherently less efficient; for 

example, the implementation could require every shared_ptr to carry the overhead of an internal 

spinlock variable (better concurrency, but significant overhead per shared_ptr), or else the library must 

maintain a lookaside data structure to store the extra information for shared_ptrs that are actually used 

atomically, or (worst and apparently common in practice) the library must use a global spinlock. 

http://en.wikipedia.org/wiki/ABA_problem


We should extend the existing consistent and superior practice of providing a distinct atomic type, to be 

available also for existing functionality that is already in the standard in [util.smartptr.shared.atomic]. 

1.4. Motivating example for atomic_weak_ptr<T>: Swinging a weak_ptr 
Many atomic uses of weak_ptr are already supported just because most uses of a weak_ptr require 

first converting it to a shared_ptr using lock(), after which you use the shared_ptr. 

However, we don’t have a way to atomically reseat an existing weak_ptr to refer to a different object. 

Consider the following code that remembers the last object seen, but only wants to hold a weak reference 

to later possibly observe the X object, but not keep it alive: 

weak_ptr<X> p_last; 

 

void use( const shared_ptr<X>& x ) { 
    do_something_with( *x ); 

    p_last = x;               // remember last X seen 

} 

To make this safe for concurrent use today would require adding an indirection to store the weak_ptr 

itself on the heap and using an atomic<weak_ptr<X>*>. For example: 

atomic<weak_ptr<X>*> p_last{nullptr}; // need init depending on scope 

 
void use( const shared_ptr<X>& x ) { 

    auto temp = make_unique<weak_ptr<X>>( x ); 

    do_something_with( *x ); 

    p_last.exchange( temp );  // remember last X seen 

} 

Instead we should be able to directly write the much simpler and less error-prone: 

atomic_weak_ptr<X> p_last; 

 

void use( const shared_ptr<X>& x ) { 

    do_something_with( *x ); 

    p_last = x;               // remember last X seen 

} 

This righteous code should be supported. 

2. Proposal 

2.1. Add atomic_shared_ptr<T> 
Specify an atomic_shared_ptr<T> type that is pure syntactic sugar for existing functionality—that sup-

ports exactly and only those operations already in [util.smartptr.shared.atomic], and not additional func-

tions such as fetch_add which don’t make sense for shared_ptrs anyway. Default construction initial-

izes to nullptr. 



This makes it clear that this proposal is not adding any new functionality and builds on known existing 

practice. If additional functions are desired in the future they can be added later. 

2.2. Deprecate [util.smartptr.shared.atomic] 
The [util.smartptr.shared.atomic] free functions are so inefficient and error-prone that they should not 

be used in cases where a proper atomic_shared_ptr<T> can do the same job. 

It appears that atomic_shared_ptr<T> is a complete replacement. If so, the free functions should be 

deprecated to encourage use of the better tool. 

2.3. Add atomic_weak_ptr<T> 
Specify an atomic_weak_ptrT<> that offers the appropriate subset of operations supported by 

weak_ptr. Default construction initializes to nullptr. 

2.4. Add atomic_unique_ptr<T> 
Specify an atomic_unique_ptrT<> partial specialization that offers the appropriate subset of opera-

tions supported by unique_ptr, with the addition of .get() to enable getting a (non-owning) raw 

pointer without moving ownership out of the atomic_unique_ptr. Default construction initializes to 

nullptr. 

3. Proposed Wording 
The proposed wording below was derived as follows: 

 Created the synopsis for atomic_shared_ptr<T> from a copy of the synopsis of atomic<T*>, 

removing all and only those functions that did not correspond to [util.smartptr.shared.atomic]. 

There were two kinds of removed functions: the volatile-qualified functions, and the pointer 

arithmetic functions. 

 Created the synopsis of atomic_unique_ptr<T> and atomic_weak_ptr<T> from 

atomic_shared_ptr<T>. 

 Added default initialization to null. 

 Added .get for atomic_unique_ptr<T>. 

3.1. Changes to 29.2 
In 29.2, add the following synopsis: 

// 29.6.x, operations on atomic smart pointer types 

template <class T> struct atomic_unique_ptr; 
template <class T> struct atomic_shared_ptr; 
template <class T> struct atomic_weak_ptr; 

3.2. Changes to 29.6 
Add the following subclause 29.6.x: 

29.6.x Operations on atomic smart pointer types [atomics.types.operations.smart-ptr] 

template <class T> struct atomic_unique_ptr { 



bool is_lock_free() const noexcept; 

void store(unique_ptr<T>, memory_order = memory_order_seq_cst) noexcept; 

unique_ptr<T> load(memory_order = memory_order_seq_cst) const noexcept; 

T* get(memory_order = memory_order_seq_cst) const noexcept; 

operator unique_ptr<T>() const noexcept; 

unique_ptr<T> exchange(unique_ptr<T>, memory_order = memory_order_seq_cst) 
noexcept; 

bool compare_exchange_weak(unique_ptr<T>&, unique_ptr<T>, memory_order, 
memory_order) noexcept; 

bool compare_exchange_strong(unique_ptr<T>&, unique_ptr<T>, memory_order, 
memory_order) noexcept; 

atomic_unique_ptr() noexcept = default; 

constexpr atomic_unique_ptr( unique_ptr<T> ) noexcept; 

atomic_unique_ptr(const atomic_unique_ptr&) = delete; 

atomic_unique_ptr& operator=(const atomic_unique_ptr&) = delete; 

unique_ptr<T> operator=(unique_ptr<T>) noexcept; 

}; 
 

template <class T> struct atomic_shared_ptr { 

bool is_lock_free() const noexcept; 

void store(shared_ptr<T>, memory_order = memory_order_seq_cst) noexcept; 

shared_ptr<T> load(memory_order = memory_order_seq_cst) const noexcept; 

operator shared_ptr<T>() const noexcept; 

shared_ptr<T> exchange(shared_ptr<T>, memory_order = memory_order_seq_cst) 
noexcept; 

bool compare_exchange_weak(shared_ptr<T>&, shared_ptr<T>, memory_order, 
memory_order) noexcept; 

bool compare_exchange_strong(shared_ptr<T>&, shared_ptr<T>, memory_order, 
memory_order) noexcept; 

atomic_shared_ptr() noexcept = default; 

constexpr atomic_shared_ptr( shared_ptr<T> ) noexcept; 

atomic_shared_ptr(const atomic_shared_ptr&) = delete; 

atomic_shared_ptr& operator=(const atomic_shared_ptr&) = delete; 

shared_ptr<T> operator=(shared_ptr<T>) noexcept; 

}; 
 
template <class T> struct atomic_weak_ptr { 

bool is_lock_free() const noexcept; 

void store(weak_ptr<T>, memory_order = memory_order_seq_cst) noexcept; 

weak_ptr<T> load(memory_order = memory_order_seq_cst) const noexcept; 

operator weak_ptr<T>() const noexcept; 

weak_ptr<T> exchange(weak_ptr<T>, memory_order = memory_order_seq_cst) no-
except; 



bool compare_exchange_weak(weak_ptr<T>&, weak_ptr<T>, memory_order, 
memory_order) noexcept; 

bool compare_exchange_strong(weak_ptr<T>&, weak_ptr<T>, memory_order, 
memory_order) noexcept; 

atomic_weak_ptr() noexcept = default; 

constexpr atomic_weak_ptr( weak_ptr<T> ) noexcept; 

atomic_weak_ptr(const atomic_weak_ptr&) = delete; 

atomic_weak_ptr& operator=(const atomic_weak_ptr&) = delete; 

weak_ptr<T> operator=(weak_ptr<T>) noexcept; 

}; 

 

Change 29.6.5/4 as follows: 

 A::A() noexcept = default; 

4 Effects: For atomic_unique_ptr, atomic_shared_ptr, and atomic_weak_ptr, initializes the 

atomic object to null. Otherwise, leaves the atomic object in an uninitialized state. [Note: 

These semantics ensure compatibility with C. —end note] 

Insert the following in 29.6.5: 

 T* A::get(memory_order order = memory_order_seq_cst) const noexcept; 

x Requires: The order argument shall not be memory_order_release nor memory_or-

der_acq_rel. 

x Effects: Memory is affected according the value of order. 

x Returns: Atomically returns the value pointed to by this. 

4. Q&A 

4.1. Q: Why not use the specialization syntax atomic<*_ptr<T>>? A: Because of SG1 

direction and good technical arguments. 
In Redmond (September 2014), SG1 expressed a strong preference for atomic_*_ptr<T> over 

atomic<*_ptr<T>> for several reasons. First, specializing atomic<> was considered by many to be 

strange and inconsistent, because atomic<T> requires T to be trivially copyable and this is not true in 

general for smart pointers. Second, specializing atomic<> seemed to give preference to the standard 

smart pointers over non-standard smart pointers, whereas just prepending atomic_ sets a simple prec-

edent for authors of non-standard smart pointers who want to provide atomic versions. Finally, specializ-

ing atomic<> makes it harder to put into the std::experimental namespace for a TS. 

4.2. Q: What about user-defined smart pointers? A: Not in scope for this proposal. 
Making user-defined smart pointers work with atomics generally requires the collaboration of the smart 

pointer author; see [3]. So this proposal is only about atomic use of the standard smart pointers, which 

already has partial support today and should be completed. 



4.3. Q: Would allowing atomic<non-POD> enable atomic<any-smart-pointer>? A: 

Alas, no. 
It seems the answer is no. Smart pointers are special; see [3]. 

4.4. Q: Well, could we still allow atomic<non-POD>, in addition to this proposal? A: Sure. 
As a separate proposal, allowing atomic<non-POD> might still be interesting on its own merits, and not 

for smart pointers. The following notes capture some ideas that could help the author of such a separate 

proposal. 

Here is one motivating example that Nat Goodspeed gave in [4]: 

Broadening the set of T for which atomic<T> is well-defined has the immediate effect of permit-

ting better implementation decisions when you need atomic<> functionality. 

Case in point: N3877’s violation_handler is defined this way: 

    using violation_handler = void (*)(const assert_info&); 

In a language with lambdas and callable objects, do we really still want to restrict any standard 

interface to a classic C function pointer? Why wouldn’t we choose std::func-

tion<void(const assert_info&)> instead? 

Ah: the reason surfaces in the reference implementation: 

    std::atomic<violation_handler> handler{abort_handler}; 

In this case, lack of support for std::atomic<std::function<>> has a direct and unfortunate 

impact on the library’s interface. 

However, there are also objections. As summarized by Jeffrey Yasskin: 

atomic<user-defined-non-POD> risks deadlocks because it involves calling user-defined 

code (copy constructors) under a lock that the user doesn’t see. 

[Anthony Williams’ proposal in [5] for] synchronized_value is probably a better way to do this, 

since it at least makes the fact of locking visible.  

Lawrence Crowl responded to add: 

One of the reasons that shared_ptr locking is the way it is is to avoid a situation in which we 

weaken the precondition on the atomic template parameter that it be trivial, and hence have no 

risk of deadlock. 

That said, we could weaken the requirement so that the argument type only needs to be lock-

free, or perhaps only non-recursively locking. 

However, while trivial makes for reasonably testable traits, I see no effective mechanism to test 

for the weaker property. 

 



5. Appendix 
I believe the following is a correct and ABA-safe implementation of a thread-safe singly linked list that 

supports insert/erase at the front only (like a stack) but also supports finding values in the list. It is written 

entirely in portable C++11, except only that it uses this paper’s proposed atomic<shared_ptr<Node>>. 

Note: This code can be written in C++11 as // commented to use the existing facilities, with the usability 

and performance drawbacks mentioned earlier in this paper. 

 

template<typename T> class concurrent_stack { 

    struct Node { T t; shared_ptr<Node> next; }; 

    atomic_shared_ptr<Node> head; 

        // in C++11: remove “atomic_” and remember to use the special 

        // functions every time you touch the variable 

    concurrent_stack(concurrent_stack&) =delete; 

    void operator=(concurrent_stack&) =delete; 

 

public: 

    concurrent_stack() =default; 

    ~concurrent_stack() =default; 

    class reference { 

        shared_ptr<Node> p; 

    public: 

        reference(shared_ptr<Node> p_) : p{p_} { } 

        T& operator* () { return  p->t; } 

        T* operator->() { return &p->t; } 

    }; 

    auto find( T t ) const { 

        auto p = head.load(); // in C++11: atomic_load(&head) 

        while( p && p->t != t ) 

            p = p->next; 

        return reference(move(p)); 

    } 

    auto front() const { 

        return reference(head); // in C++11: atomic_load(&head) 
    } 

    void push_front( T t ) { 

        auto p = make_shared<Node>(); 

        p->t = t; 

        p->next = head; // in C++11: atomic_load(&head) 

        while( !head.compare_exchange_weak(p->next, p) ) 

            { }  

        // in C++11: atomic_compare_exchange_weak(&head, &p->next, p); 

    } 



    void pop_front() { 

        auto p = head.load(); 

        while( p && !head.compare_exchange_weak(p, p->next) ) 
            { } 

        // in C++11: atomic_compare_exchange_weak(&head, &p, p->next); 

    } 

}; 

 

6. Acknowledgments 
Thanks to Hans Boehm, Lawrence Crowl, Peter Dimov, Gabriel Dos Reis, Olivier Giroux, Stephan T. Lavavej, 

Tony Van Eerd, Jonathan Wakely, Anthony Williams and Jeffrey Yasskin for their comments and feedback 

on this topic and/or on drafts of this paper. 

7. References 
[1] H. Boehm in c++std-lib-22167, LWG reflector thread “Shared Pointer Atomicity” (August 2008). 

[2] SG1 reflector thread, “shared_ptr atomic access -> atomic<shared_ptr<>>” (March 2014). Starts at 

c++std-parallel-735, and see also etc. 

[3] P. Dimov in c++std-parallel-754, “atomic<T> for non-PODs …” (March 2014). See also related nearby 

messages in that thread. 

[4] N. Goodspeed in c++std-parallel-752, “atomic<T> for non-PODs …” (March 2014). 

[5] A. Williams. N4033: “synchronized_value<T> for associating a mutex with a value” (May 2014). 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4033.html

