
Update Annex E onto Unicode 15.1

Steve Downey <sdowney@gmail.com>
<sdowney2@bloomberg.net>

Document #: D3727R0
Date: 2025-05-31
Project: Programming Language C++
Audience: SG16, CWG

Abstract

Update the non-normative Annex E to reflect Unicode 15.1 in order to close Core Issue [CWG2843].

Contents

1 Introduction 1

2 Proposal 1

3 Wording 1

4 Impact on the standard 4

References 4

1 Introduction

“Unicode Standard Annex #31: Unicode Identifiers and Syntax” for Unicode 15.1 [UAX31-15.1:online] clarifies
some of the rules for identifiers and white space syntax. This paper proposes no normative changes in either
area. It simply updates the current Annex E to match the forms used in Unicode Annex 31 as of Unicode
15.1 [unicode_15_1]. See also the differences from Unicode 14 as marked up in [UAX31-15.1-DIFF:online]

2 Proposal

Strike the reference to R1a Restricted Format Characters. Note that as of Unicode 15.1, U+200D ZERO WIDTH
JOINER and U+200C ZERO WIDTH NON-JOINER are part of XID_Continue, and allowed in identifiers.
Replace individual disclaimed conformance points with blanket disclaimer as the conformance list is open
ended.

3 Wording

The proposed changes are relative to [N5008].
Update Annex E as follows.

Contents 1

mailto:sdowney@gmail.com
mailto:sdowney2@bloomberg.net

�? .1 General [uaxid.general]
1 This Annex describes the choices made in application of UAX #31 (“Unicode Identifier and Pattern Syntax”)

to C++ in terms of the requirements from UAX #31 and how they do or do not apply to this document. In
terms of UAX #31, this document conforms by meeting the requirements R1 “Default Identifiers” and R4
“Equivalent Normalized Identifiers” from UAX #31. The other requirements from UAX #31, also listed below,
are either alternatives not taken or do not apply to this document.

�? .2 R1 Default identifiers [uaxid.def]
�? . �? .1 General [uaxid.def.general]

1 UAX #31 specifies a default syntax for identifiers based on properties from the Unicode Character Database,
UAX #44. The general syntax is

<Identifier> := <Start> <Continue>* (<Medial> <Continue>+)*

where <Start> has the XID_Start property, <Continue> has the XID_Continue property, and <Medial>
is a list of characters permitted between continue characters. For C++ we add the character U+005F LOW
LINE, or _, to the set of permitted <Start> characters, the <Medial> set is empty, and the <Continue>
characters are unmodified. In the grammar used in UAX #31, this is

<Identifier> := <Start> <Continue>*

<Start> := XID_Start + @\textrm{\ucode{005f}}@

<Continue> := <Start> + XID_Continue

2 This is described in the C++ grammar in 5.11, where identifier is formed from identifier-start or identifier
followed by identifier-continue.

�? . �? .2 R1a Restricted format characters [uaxid.def.rfmt]
1 The clause R1a has been removed from UAX #31.

The characters that were added when meeting this requirement are now part of the default; the
contextual checks required by this requirement remain as part of the General Security Profile in
Unicode Technical Standard #39, “Unicode Security Mechanisms”.

�? . �? .3 R1a Restricted format characters [uaxid.def.rfmt]
1 If an implementation of UAX #31 wishes to allow format characters such as U+200D ZERO WIDTH JOINER

or U+200C ZERO WIDTH NON-JOINER it must define a profile allowing them, or describe precisely which
combinations are permitted.

2 C++ does not allow format characters in identifiers, so this does not apply.

�? . �? .4 R1b Stable identifiers [uaxid.def.stable]
1 An implementation of UAX #31 may choose to guarantee that identifiers are stable across versions of the

Unicode Standard. Once a string qualifies as an identifier it does so in all future versions.
2 C++ does not make this guarantee, except to the extent that UAX #31 guarantees the stability of the XID_Start

and XID_Continue properties.

�? .3 R2 Immutable identifiers [uaxid.immutable]
1 An implementation may choose to guarantee that the set of identifiers will never change by fixing the set of

code points allowed in identifiers forever.
2 C++ does not choose to make this guarantee. As scripts are added to Unicode, additional characters in those

scripts may become available for use in identifiers.

�? .4 R3 Pattern_White_Space and Pattern_Syntax characters [uaxid.pattern]
1 UAX #31 describes how formal languages such as computer languages should describe and implement their

use of whitespace and syntactically significant characters during the processes of lexing and parsing.
2 This document does not claim conformance with this requirement from UAX #31.

2

�? .5 R4 Equivalent normalized identifiers [uaxid.eqn]
1 UAX #31 requires that implementations describe how identifiers are compared and considered equivalent.
2 This document requires that identifiers be in Normalization Form C and therefore identifiers that compare

the same under NFC are equivalent. This is described in 5.11.

�? .6 Requirements of UAX #31 for which no claims are made [uaxid.nonobservance]
UAX #31 version 15.1 has conformance requirements which either do not apply to C++ or which this document
makes no claim about.

— R2. Immutable Identifiers
— R3. Pattern_White_Space and Pattern_Syntax Characters
— R5. Equivalent Case-Insensitive Identifiers
— R6. Filtered Normalized Identifiers
— R7. Filtered Case-Insensitive Identifiers
— R8. Hashtag Identifiers

This document also makes no claim about additional conformance points in any versions of UAX #31 in
versions after 15.1.

�? .7 R5 Equivalent case-insensitive identifiers [uaxid.eqci]
1 This document considers case to be significant in identifier comparison, and does not do any case folding.
This requirement from UAX #31 does not apply to this document.

�? .8 R6 Filtered normalized identifiers [uaxid.filter]
1 If any characters are excluded from normalization, UAX #31 requires a precise specification of those exclu-

sions.
2 This document does not make any such exclusions.

�? .9 R7 Filtered case-insensitive identifiers [uaxid.filterci]
1 C++ identifiers are case sensitive, and therefore this requirement from UAX #31 does not apply.

�? .10 R8 Hashtag identifiers [uaxid.hashtag]
1 There are no hashtags in C++, so this requirement from UAX #31 does not apply.

3

4 Impact on the standard

No normative change. Modifies non-normative text describing the conformance points with the Unicode
Identifier standard.

Document history

— Initial
— Rework of P3717R0 on Unicode 15.1

References

[CWG2843] JonathanWakely. CWG2843: Undated reference to unicode makes c++ a moving target. https:
//wg21.link/cwg2843, 1 2024.

[N5008] Thomas Köppe. N5008: Working draft, programming languages — c++. https://wg21.link/
n5008, 3 2025.

[UAX31-15.1-DIFF:online] Mark Davis and Robin Leroy. Unicode identifiers and syntax. https://www.
unicode.org/reports/tr31/tr31-38.html, 08 2023. (Accessed on 2025-05-31).

[UAX31-15.1:online] Mark Davis and Robin Leroy. Unicode identifiers and syntax. https://www.

unicode.org/reports/tr31/tr31-39.html, 09 2023. (Accessed on 05/31/2025).

[unicode_15_1] The Unicode Consortium. The unicode standard, version 15.1. https://www.unicode.
org/versions/Unicode15.1.0/, 2023.

4

https://wg21.link/cwg2843
https://wg21.link/cwg2843
https://wg21.link/n5008
https://wg21.link/n5008
https://www.unicode.org/reports/tr31/tr31-38.html
https://www.unicode.org/reports/tr31/tr31-38.html
https://www.unicode.org/reports/tr31/tr31-39.html
https://www.unicode.org/reports/tr31/tr31-39.html
https://www.unicode.org/versions/Unicode15.1.0/
https://www.unicode.org/versions/Unicode15.1.0/

	Introduction
	Proposal
	Wording
	Impact on the standard
	References

