
Specifying Trivially Relocatable Types in the Standard Library
Adding a new specification element for class properties

Document #: DxxxxR0
Date: 2024-MM-DD
Project: Programming Language C++
Audience: Library Evolution
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>

Contents
1 Abstract 2

2 Revision history 2

3 Introduction 3

4 Analysis 4
4.1 History . 4

5 Design Principles 5

6 Proposed Solution 6
6.1 Which class properties should be specified . 6
6.2 Clauses that should note interaction with class properties . 6

7 Wording 7

8 Acknowledgements 8

9 References 8

1

mailto:ameredith1@bloomberg.net

1 Abstract
[P2786R5] introduces the notion of trivial relocatability to the C++ Standard without making specific recom-
mendations on which parts of the Standard Library should provide guarantees regarding the new facility. This
paper will review the whole C++ Standard Library making those recommendations for which types must be
trivially relocatable and which types may support such relocatability as part of their Quality of Implementation
(QoI) concerns.

A new Library specification element for class properties is introduced to consistently address similar concerns
across the whole library, that are treated in a more ad-hoc manner today.

2 Revision history
PRE-PRINT — THIS DOCUMENT WILL BE FINALIZED FOR THE PRE-ST LOUIS 2024 MAILING

R0 January 2024 (midterm mailing)

Initial draft of this paper.

Review status of clauses:

16 [library] In progress
17 [support] Not Started
18 [concepts] Not Started
19 [diagnostics] Not Started
20 [mem] Not Started
21 [meta] Not Started
22 [utilities] Not Started
23 [strings] Not Started
24 [containers] Not Started
25 [iterators] Not Started
26 [ranges] Not Started
27 [algorithms] Not Started
28 [numerics] Not Started
29 [time] Not Started
30 [localization] Not Started
31 [input.output] Not Started
32 [re] Not Started
33 [thread] Not Started
D [depr] Not Started

2

https://wg21.link/library
https://wg21.link/support
https://wg21.link/concepts
https://wg21.link/diagnostics
https://wg21.link/mem
https://wg21.link/meta
https://wg21.link/utilities
https://wg21.link/strings
https://wg21.link/containers
https://wg21.link/iterators
https://wg21.link/ranges
https://wg21.link/algorithms
https://wg21.link/numerics
https://wg21.link/time
https://wg21.link/localization
https://wg21.link/input.output
https://wg21.link/re
https://wg21.link/thread
https://wg21.link/depr

3 Introduction

3

4 Analysis
4.1 History

4

5 Design Principles

5

6 Proposed Solution
We propose adding a new specification element, Class properties, for any specification related to class properties
11.2 [class.prop]. The Standard Library already makes some effort to specify whether a class must be trivially
copyable, standard layout, etc., and we believe it would be more maintainable to track such specification with a
consistent presentation, using a consistent form.

Once we have a Class properties element, we can then review all library classes and decide whether to specify the
trivial relocatability behavior for that class, which might be conditional on its template arguments if it is a class
template. We might also deliberately defer specifying behavior to allow for implementations making different
choices, such as node-based containers allocating their end node vs storing the pointers in the container’s object
representation.

To avoid burdening the text with too much information, we also suggest blanket wording that says any Standard
Library type that is trivially copyable is also trivially relocatable, so we do not need to repeat information that
only a deliberately hostile implementation would exploit.

Finally, once we have an easy way to document class properties, we might consider making stronger guarantees
on existing library components where such specification would be useful, for example clarifying which types are
implicit lifetime.

6.1 Which class properties should be specified
— Trivially copyable
— Trivially relocatable
— Standard Layout
— Implicit lifetime
— Structural 13.2 [temp.param]
— Aggregate (might be just std::array?)
— Empty (likely extending current spec; relevant for many standard class templates)
— Bitmask (Library qualification, but used frequently enough)

6.1.1 Consider

— Literal types
— Layout compatible types (if the situation arises?)

6.1.2 Other

— Callable
— Final
— Integer-class
— Polymorphic

6.2 Clauses that should note interaction with class properties
— 16.3.2.4 [structure.specifications] — class properties as well as invariants
— 16.3.3.3.5 [customization.point.object] — may be mildly reformulated with the new specification element
— 16.3.3.5 [objects.within.classes] — we may be constraining which members may be added

6

https://wg21.link/class.prop
https://wg21.link/temp.param
https://wg21.link/structure.specifications
https://wg21.link/customization.point.object
https://wg21.link/objects.within.classes

7 Wording
Make the following changes to the C++ Working Draft. All wording is relative to [N4981], the latest draft at
the time of writing.

7

8 Acknowledgements
Thanks to Michael Parks for the pandoc-based framework used to transform this document’s source from Mark-
down.

9 References
[N4981] Thomas Köppe. 2024-04-16. Working Draft, Programming Languages — C++.

https://wg21.link/n4981

[P2786R5] Mungo Gill, Alisdair Meredith. 2024-04-09. Trivial Relocatability For C++26.
https://wg21.link/p2786r5

8

https://wg21.link/n4981
https://wg21.link/p2786r5

	Abstract
	Revision history
	Introduction
	Analysis
	History

	Design Principles
	Proposed Solution
	Which class properties should be specified
	Clauses that should note interaction with class properties

	Wording
	Acknowledgements
	References

