
A More Composable from_chars
Document #: D2584R1
Date: 2022-08-09
Programming Language C++
Audience: LEWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Abstract

We propose an easier way to convert a sequence of characters to a number using std::from_-
chars. This paper is a follow-up to P2007R0 [2].

Tony table

Before After

std::string s = "1.2.3.4";

auto ints =
s | std::views::split('.')
| std::views::transform([](const auto & v){
int i = 0;
std::from_chars(std::to_address(v.begin()),

std::to_address(v.end(), i);
return i;

});

std::string s = "1.2.3.4";

auto ints =
s | std::views::split('.')

| std::views::transform([](const auto & v) {
return std::from_chars<int>(v).value_or(0);

});

This example was taken from Barry’s Revzin blog post on the deficiencies of the old split view.

1

mailto:corentin.jabot@gmail.com
https://wg21.link/P2007R0
https://brevzin.github.io/c++/2020/07/06/split-view/

Revisions

R1

• Modify the expected base interface to inherit from expected such that the unparsed
information is always preserved.

• Present the expected interface as the primary option preferred by the author.

• Add wording for the expected based option

• Fix typos and wording issues

Example

Motivation and design

We propose to add new from_chars overloads with the aim of simplifying the use of the
interface and making it more composable.

Design using std::expected

We propose an interface returning an object inheriting from expected to make it easier to
access the value, and to check for errors:

template <typename T>
struct from_chars_result_range : std::expected<T, std::errc> {

std::span<const char> unparsed = {};
};

template <std::integral T>
constexpr from_chars_result_range<T> from_chars(span<const char> rng, int base = 10);

template <std::floating_point T>
from_chars_result_range<T>
from_chars(std::span<const char> rng, std::chars_format fmt = std::chars_format::general);

This interface is hard to misuse and would encourage checking for errors. It turns out to be
pretty nice to use too. The one drawback is the reliance on the expected header.

Contrary to R0 and what was claimed previously, if one or more characters are matched, but
the value is outside of the type bound, there is both an error and some characters parsed. So
we need to inherit from expected to add the unparsed member in both the value and error
case.

int main() {
assert(from_chars<int>("123").value_or(0) == 123);
assert(from_chars<int>("cafe", 16).value_or(0) == 0xcafe);
assert(from_chars<int>("cafe").value_or(42) == 42);

2

if(auto parsed = std::from_chars<int>("123!!"); parsed) {
assert(*parsed == 123);
assert(std::ranges::equal(parsed.unparsed, "!!"));

}
}

from_chars should take a range rather than a pair of pointers

As explained in P2007R0 [2], a correct use of from_chars with any kind of range call for

std::from_chars(std::to_address(std::ranges::begin(rng)), std::to_address(std::ranges::end(rng)), out);

This is because:

• The iterators may not be pointers

• The range may be contiguous but not sized (so data(), data()+size() isn’t an option).

It’s a lot of subtleties and verbosity for a relatively common interface.

from_chars should return its result by value

Having the converted value as part of the return type gives more opportunity for composition.
For example, it allows patterns such as:

if(auto [value, ec, _] = std::from_chars<int>(range); ec == std::errc()) {}

To achieve that, the proposed from_chars overloads take the desired output type as a template
parameter and return a from_chars_result_range object.

span vs string_view vs contiguous_range

This proposal uses span<const char>. This is because P2499R0 [4], by making string_view’s
string_view range constructor explicit, makes using it in contexts where we want to accept
any range of char more tedious than it needs to be and less composable.

Ultimately, whether we choose span<const char> or string_view depends on whether we think
the range case is more commone than the const char* use case.

Using contiguous_range over span has very little benefits. The proposed design uses span in
its returned object anyway (to store the remaining range), so it would not save on headers
inclusion, and is a very small header anyway,

Header

During previous discussions, there were some concerns that this would impact compile times.
In the meantime we:

• Made from_chars constexpr, leading to potentially bigger header

3

https://wg21.link/P2007R0
https://wg21.link/P2499R0

• Standardized header units and a stdmodule.

from_chars_result_range is not comparable

The rationale to make from_chars_result (P1191R0 [3]) comparable is unclear, and it has been
regarded as a bad move. Indeed, it is unclear what the invariant of from_chars_result is.
We do, therefore, not propose to make the new from_chars_result_range type comparable,
especially in the absence of good rationale.

But from_chars is intended as a low level interface!

from_chars is efficient, correct and usable portably. That doesn’t mean it should be hard to
use. The proposed interface doesn’t make from_chars less usable, quite the contrary, and
that’s a good thing. It’s not because a facility is ”low-level” that it should be gratuitously
expert-friendly.

Alternative interface

The following design, which was presented as the primary option in R0 does not use expected
and can be more easily used with structured binding. But, it encourages ignoring errors, and
does not offer the same ergonomic benefits as the monadic interfaces of expected.

template <typename T>
struct from_chars_result_range {

T value;
std::errc ec;
std::span<const char> unparsed;

};
template <integral T>
requires (!std::same_as<bool, T>)
constexpr from_chars_result_range<T> from_chars(std::span<const char> rng, int base = 10);

template <floating_point T>
from_chars_result_range<T> from_chars(std::span<const char> rng, chars_format fmt = chars_format::general);

Question for LEWG

• Do we like the general direction?

• Do we prefer the version with expected or the one without?

Implementation experience

The new overloads are specified to wrap the existing one, so this proposal presents no
particular implementation complexity. The design using std::expected is demoed here.

The alternative design (without expected) is also on Compiler Explorer.

4

https://wg21.link/P1191R0
https://lists.isocpp.org/lib/2021/11/21141.php
https://lists.isocpp.org/lib/2021/11/21141.php
https://godbolt.org/z/P65f3bY9c
https://godbolt.org/z/rnxE1o9Ma

Wording (for the design with expected)

�? Header <charconv> synopsis [charconv.syn]

namespace std {
// ??, primitive numerical output conversion
struct to_chars_result {

char* ptr;
errc ec;
friend bool operator==(const to_chars_result&, const to_chars_result&) = default;

};

// ??, primitive numerical input conversion
struct from_chars_result {

const char* ptr;
errc ec;
friend bool operator==(const from_chars_result&, const from_chars_result&) = default;

};

template <typename T>
struct from_chars_result_range : expected<T, errc> {

std::span<const char> unparsed = {};

constexpr from_chars_result_range(T value, span<const char> unparsed) // exposition only
noexcept

: expected<T, errc>(value), unparsed(unparsed) {};
constexpr from_chars_result_range(errc err, span<const char> unparsed) // exposition only
noexcept

: expected<T, errc>(std::unexpect, err), unparsed(unparsed) {};

template <typename U>
bool operator==(const from_chars_result_range<U>&) = delete;

};

from_chars_result from_chars(const char* first, const char* last,
see below& value, int base = 10);
template <typename T>
constexpr from_chars_result_range<T> from_chars(span<const char> rng, int base = 10)

from_chars_result from_chars(const char* first, const char* last, float& value,
chars_format fmt = chars_format::general);
from_chars_result from_chars(const char* first, const char* last, double& value,
chars_format fmt = chars_format::general);
from_chars_result from_chars(const char* first, const char* last, long double& value,
chars_format fmt = chars_format::general);
template <typename T>
from_chars_result_range<T> from_chars(span<const char> rng,
chars_format fmt = chars_format::general);

}

5

The type chars_format is a bitmask type with elements scientific, fixed, and hex.

The types to_chars_result, from_chars_result_range, and from_chars_result have the data
members and special members specified above. They have no base classes or members other
than those specified.

�? Primitive numeric input conversion [charconv.from.chars]

All functions named from_chars analyze the string [first, last) for a pattern, where [first,
last) is required to be a valid range. If no characters match the pattern, value is unmodified,
the member ptr of the return value is first and the member ec is equal to errc::invalid_-
argument. [Note: If the pattern allows for an optional sign, but the string has no digit characters
following the sign, no characters match the pattern. —end note] Otherwise, the characters
matching the pattern are interpreted as a representation of a value of the type of value. The
member ptr of the return value points to the first character not matching the pattern, or has
the value last if all characters match. If the parsed value is not in the range representable
by the type of value, value is unmodified and the member ec of the return value is equal
to errc::result_out_of_range. Otherwise, value is set to the parsed value, after rounding
according to round_to_nearest, and the member ec is value-initialized.

from_chars_result from_chars(const char* first, const char* last,
see below& value, int base = 10);

Preconditions: base has a value between 2 and 36 (inclusive).

Effects: The pattern is the expected form of the subject sequence in the "C" locale for
the given nonzero base, as described for strtol, except that no "0x" or "0X" prefix shall
appear if the value of base is 16, and except that '-' is the only sign that may appear,
and only if value has a signed type.

Throws: Nothing.

Remarks: The implementation shall provide overloads for all signed and unsigned integer
types and char as the referenced type of the parameter value.

template <typename T>
constexpr from_chars_result_range<T>
from_chars(span<const char> rng, int base = 10)

Constraints: Tmodels integral and same_as<T, bool> is false.

Preconditions: base has a value between 2 and 36 (inclusive).

Effects: Equivalent to

T out;
auto [ptr, ec] = from_chars(to_address(begin(rng)),

to_address(end(rng)), out, base);
auto subspan = rng.subspan(ptr - rng.data());
return ec != errc()

? from_chars_result_range<T>{ec, subspan}
: from_chars_result_range<T>{out, subspan};

6

Throws: Nothing.

from_chars_result from_chars(const char* first, const char* last, float& value,
chars_format fmt = chars_format::general);
from_chars_result from_chars(const char* first, const char* last, double& value,
chars_format fmt = chars_format::general);
from_chars_result from_chars(const char* first, const char* last, long double& value,
chars_format fmt = chars_format::general);

Preconditions: fmt has the value of one of the enumerators of chars_format.

Effects: The pattern is the expected form of the subject sequence in the "C" locale, as
described for strtod, except that

• the sign '+'may only appear in the exponent part;

• if fmt has chars_format::scientific set but not chars_format::fixed, the otherwise
optional exponent part shall appear;

• if fmt has chars_format::fixed set but not chars_format::scientific, the optional
exponent part shall not appear; and

• if fmt is chars_format::hex, the prefix "0x" or "0X" is assumed. [Example: The string
0x123 is parsed to have the value 0 with remaining characters x123. —end example]

In any case, the resulting value is one of at most two floating-point values closest to the
value of the string matching the pattern.

Throws: Nothing.

template <typename T>
from_chars_result_range<T> from_chars(span<const char> rng, chars_format fmt = chars_format::general);

Constraints: Tmodels floating_point.

Preconditions: fmt has the value of one of the enumerators of chars_format.

Effects: Equivalent to

T out;
auto [ptr, ec] = from_chars(to_address(begin(rng)),

to_address(end(rng)), out, fmt);
auto subspan = rng.subspan(ptr - rng.data());
return ec != errc()

? from_chars_result_range<T>{ec, subspan}
: from_chars_result_range<T>{out, subspan};

Wording (for the design without expected)

�? Header <charconv> synopsis [charconv.syn]

7

namespace std {
// floating-point format for primitive numerical conversion
enum class chars_format {

scientific = unspecified,
fixed = unspecified,
hex = unspecified,
general = fixed | scientific\textbf{}

};

// ??, primitive numerical output conversion
struct to_chars_result {

char* ptr;
errc ec;
friend bool operator==(const to_chars_result&, const to_chars_result&) = default;

};

to_chars_result to_chars(char* first, char* last, see below value, int base = 10);
to_chars_result to_chars(char* first, char* last, bool value, int base = 10) = delete;

to_chars_result to_chars(char* first, char* last, float value);
to_chars_result to_chars(char* first, char* last, double value);
to_chars_result to_chars(char* first, char* last, long double value);

to_chars_result to_chars(char* first, char* last, float value, chars_format fmt);
to_chars_result to_chars(char* first, char* last, double value, chars_format fmt);
to_chars_result to_chars(char* first, char* last, long double value, chars_format fmt);

to_chars_result to_chars(char* first, char* last, float value,
chars_format fmt, int precision);
to_chars_result to_chars(char* first, char* last, double value,
chars_format fmt, int precision);
to_chars_result to_chars(char* first, char* last, long double value,
chars_format fmt, int precision);

// ??, primitive numerical input conversion
struct from_chars_result {

const char* ptr;
errc ec;
friend bool operator==(const from_chars_result&, const from_chars_result&) = default;

};

template <integral T>
struct from_chars_result_range {

T value;
errc ec;
span<const char> unparsed;

};

from_chars_result from_chars(const char* first, const char* last,
see below& value, int base = 10);

8

template <typename T>
constexpr from_chars_result_range<T> from_chars(span<const char> rng, int base = 10)

from_chars_result from_chars(const char* first, const char* last, float& value,
chars_format fmt = chars_format::general);
from_chars_result from_chars(const char* first, const char* last, double& value,
chars_format fmt = chars_format::general);
from_chars_result from_chars(const char* first, const char* last, long double& value,
chars_format fmt = chars_format::general);
template <typename T>
from_chars_result_range<T> from_chars(span<const char> rng,

chars_format fmt = chars_format::general);
}

The type chars_format is a bitmask type with elements scientific, fixed, and hex.

The types to_chars_result, from_chars_result_range, and from_chars_result have the data
members and special members specified above. They have no base classes or members other
than those specified.

�? Primitive numeric input conversion [charconv.from.chars]

All functions named from_chars analyze the string [first, last) for a pattern, where [first,
last) is required to be a valid range. If no characters match the pattern, value is unmodified,
the member ptr of the return value is first and the member ec is equal to errc::invalid_-
argument. [Note: If the pattern allows for an optional sign, but the string has no digit characters
following the sign, no characters match the pattern. —end note] Otherwise, the characters
matching the pattern are interpreted as a representation of a value of the type of value. The
member ptr of the return value points to the first character not matching the pattern, or has
the value last if all characters match. If the parsed value is not in the range representable
by the type of value, value is unmodified and the member ec of the return value is equal
to errc::result_out_of_range. Otherwise, value is set to the parsed value, after rounding
according to round_to_nearest, and the member ec is value-initialized.

from_chars_result from_chars(const char* first, const char* last,
see below& value, int base = 10);

Preconditions: base has a value between 2 and 36 (inclusive).

Effects: The pattern is the expected form of the subject sequence in the "C" locale for
the given nonzero base, as described for strtol, except that no "0x" or "0X" prefix shall
appear if the value of base is 16, and except that '-' is the only sign that may appear,
and only if value has a signed type.

Throws: Nothing.

Remarks: The implementation shall provide overloads for all signed and unsigned integer
types and char as the referenced type of the parameter value.

template <typename T>
constexpr from_chars_result_range<T> from_chars(span<const char> rng, int base = 10);

9

Constraints: Tmodels integral and same_as<T, bool> is false.

Preconditions: base has a value between 2 and 36 (inclusive).

Effects: Equivalent to

T out;
auto res = from_chars(to_address(rng.begin()), to_address(rng.end()), out, base);
return {out, res.ec, rng.subspan(res.ptr - rng.data())};

Throws: Nothing.

from_chars_result from_chars(const char* first, const char* last, float& value,
chars_format fmt = chars_format::general);
from_chars_result from_chars(const char* first, const char* last, double& value,
chars_format fmt = chars_format::general);
from_chars_result from_chars(const char* first, const char* last, long double& value,
chars_format fmt = chars_format::general);

Preconditions: fmt has the value of one of the enumerators of chars_format.

Effects: The pattern is the expected form of the subject sequence in the "C" locale, as
described for strtod, except that

• the sign '+'may only appear in the exponent part;

• if fmt has chars_format::scientific set but not chars_format::fixed, the otherwise
optional exponent part shall appear;

• if fmt has chars_format::fixed set but not chars_format::scientific, the optional
exponent part shall not appear; and

• if fmt is chars_format::hex, the prefix "0x" or "0X" is assumed. [Example: The string
0x123 is parsed to have the value 0 with remaining characters x123. —end example]

In any case, the resulting value is one of at most two floating-point values closest to the
value of the string matching the pattern.

Throws: Nothing.

template <typename T>
from_chars_result_range<T> from_chars(span<const char> rng, chars_format fmt = chars_format::general);

Constraints: Tmodels floating_point.

Preconditions: fmt has the value of one of the enumerators of chars_format.

Effects: Equivalent to

T res;
auto [ptr, ec] = from_chars(to_address(rng.begin()), to_address(rng.end()), res, base);
return {res, ec, rng.subspan(ptr - rng.data())};

10

Feature test macro

[Editor’s note: Bump the value of __cpp_lib_to_chars to the date of adoption in charconv and
version]

Acknowledgments

Thanks to Mateusz Pusz for writing P2007R0 [2] which this paper is derived from. Thanks to
Zhihao Yuan, Jeff Garland and others for helping me brainstorm these interfaces.

References

[1] Marc Mutz. P2218R0: More flexible optional::value_or(). https://wg21.link/p2218r0, 9
2020.

[2] Mateusz Pusz. P2007R0: ‘std::from_chars‘ should work with ‘std::string_view‘. https:
//wg21.link/p2007r0, 1 2020.

[3] David Stone. P1191R0: Adding operator<=> to types that are not currently comparable.
https://wg21.link/p1191r0, 8 2018.

[4] James Touton. P2499R0: string_view range constructor should be explicit. https://wg21.
link/p2499r0, 12 2021.

11

https://wg21.link/P2007R0
https://wg21.link/p2218r0
https://wg21.link/p2007r0
https://wg21.link/p2007r0
https://wg21.link/p1191r0
https://wg21.link/p2499r0
https://wg21.link/p2499r0

	1 Abstract
	2 Tony table
	3 Revisions
	3.1 R1

	4 Example
	5 Motivation and design
	6 Design using std::expected
	6.1 from_chars should take a range rather than a pair of pointers
	6.2 from_chars should return its result by value
	6.3 span vs string_view vs contiguous_range
	6.4 Header
	6.5 from_chars_result_range is not comparable
	6.6 But from_chars is intended as a low level interface!
	6.7 Alternative interface

	7 Question for LEWG
	8 Implementation experience
	9 Wording (for the design with expected)
	9.1 Header <charconv> synopsis
	9.2 Primitive numeric input conversion

	10 Wording (for the design without expected)
	10.1 Header <charconv> synopsis
	10.2 Primitive numeric input conversion

	11 Feature test macro
	12 Acknowledgments

