A

A Tour of C++: Containersand Algorithms

Why waste time learning
when ignorance is instantaneous?
— Hobbes

» Libraries
Standard Library Overview; The Standard-library Headers and Namespace
» Strings
e Stream /O
Output; Input; string 1/0; 1/0O of User-defined Types
o Containers
vector; list; map; unordered_map; Container Overview
» Algorithms
Use of Iterators; Iterator Types, Stream Iterators; Predicates; Algorithm Overview;
Container Algorithms
» Advice

4.1 Libraries [tour3.lib]

No significant program is written in just a bare programming language. First, a set of sup-
porting libraries is developed. These then form the basis for further work. Most programs
are tedious to write in the bare language, whereas just about any task can be rendered sim-
ple by the use of good libraries.

Continuing from Chapter 2 and Chapter 3, this chapter and the next give a quick tour
of key standard-library facilities. The assumption is that you have programmed before. 1f
not, please consider reading a textbook, such as Programming: Principles and Practice
using C++ [Stroustrup, 2009], before continuing here. Even if you have programmed

The C++ Programming Language, 4th edition ©2013 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.

94 A Tour of C++: Containersand Algorithms Chapter 4

before, the libraries you used or the applications you wrote may be very different from the
style of C++ presented here. If you find this ““lightning tour’” confusing, another approach
could be to skip to the more systematic and bottom up language presentation starting in
Chapter 6. Similarly, a more systematic description of the standard library starts in Chap-
ter 30.

| very briefly present useful standard-library types, such as string, ostream, vector, map
(this chapter), unique_ptr, thread, regex, and complex (Chapter 5), as well as the most com-
mon ways of using them. Doing this allows me to give better examples in the following
chapters. Asin Chapter 2 and Chapter 3, you are strongly encouraged not to be distracted
or discouraged by an incomplete understanding of details. The purpose of this chapter is
to give you ataste of what isto come and to convey a basic understanding of the most use-
ful library facilities.

The standard library facilities described in this book are part of every complete C++
implementation. In addition to the standard C++ library, most implementations offer
“graphical user interface’” systems (GUIs), Web interfaces, database interfaces, etc. Simi-
larly, most application development environments provide ‘‘foundation libraries” for cor-
porate or industrial “‘standard” development and/or execution environments. Here, | do
not describe such systems and libraries. The intent is to provide a self-contained descrip-
tion of C++ as defined by the standard and to keep the examples portable, except where
specifically noted. Naturally, a programmer is encouraged to explore the more extensive
facilities available on most systems.

4.1.1 Standard-library Overview [tour3.post]

The facilities provided by the standard library can be classified like this:

[1] Basic run-time language support (e.g., for allocation and run-time type informa-
tion); see §30.3.

[2] The C standard library (with very minor modifications to minimize violations of
the type system); see Chapter 41.

[3] Strings and 1/0O streams (with support for international character sets and local-
ization); see Chapter 35, Chapter 37, and Chapter 38. 1/0 streams is an extensi-
ble framework to which users can add their own streams, buffering strategies,
and character sets.

[4] A framework of containers (such as vector, list, and map) and algorithms (such as
find(), sort(), and merge()); See 8§4.4, §4.5 ,Chapter 31, Chapter 32, and Chapter 33.
This framework, conventionally called the STL [Stepanov,1994], is extensible so
that users can easily add their own containers and algorithms.

[5] Support for numerical computation (such as standard mathematical functions,
complex numbers, vectors with arithmetic operations, and random number gen-
erators); see §83.2.1.1 and Chapter 39.

[6] Support for regular expression matching; see 85.5 and Chapter 36.

[7] Support for concurrent processing, including threads and locks; see 85.3 and
Chapter 40. The concurrency support is foundational so that users can add sup-
port for new models of concurrency as libraries.

The C++ Programming Language, 4th edition ©2013 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.

Section 4.1.1 Standard-library Overview 95

[8] Utilities to support template metaprogramming (e.g., type traits; 85.4.2, §28.2.4,
834.7), STL-style generic programming (e.g., pair; 85.4.3, 834.2.4.1), and gen-
eral programming (e.g., clock; 85.4.1, §34.6).
[9] ‘“Smart pointers’ for resource management (e.g., unique_ptr and shared_ptr;
85.2.1, 834.3) and an interface to garbage collectors (§34.8).
[10] Specia-purpose containers, such as array (834.2.1), bitset (834.2.2), and tuple
(834.2.4.2).
The main criterion for including a class in the library was that it would somehow be used
by almost every C++ programmer (both novices and experts), that it could be provided in
a general form that did not add significant overhead compared to a simpler version of the
same facility, and that simple uses should be easy to learn (relative to the inherent com-
plexity of the task performed). Essentially, the C++ standard library provides the most
common fundamental data structures together with the fundamental algorithms used on
them.

4.1.2 The Standard-library Headersand Namespace [tour3.name]
Every standard library facility is provided through some standard header. For example:

#include<string>
#include<list>

This makes the standard string and list available.
The standard library is defined in a namespace (82.4.2, 814.3.1) called std. To use
standard library facilities, the std:: prefix can be used:

std::string s {"Four legs Good; two legs Baaad!"};
std::list<std::string> slogans {"War is peace", "Freedom is Slavery", "Ignorance is Strength"};

For simplicity, | will rarely use the std:: prefix explicitly in examples. Neither will |
always #include the necessary headers explicitly. To compile and run the program frag-
ments here, you must #include the appropriate headers (as listed in 84.4.5, 84.5.5, and
§30.2) and make the names they declare accessible. For example:

#include<string> /I make the standard string facilities accessible
using namespace std; /l make std names available without std:: prefix

string s {"C++ is a general-purpose programming language"}; // ok: string is std::string

It is generally in poor taste to dump every name from a namespace into the global
namespace. However, in this book, | use the standard library almost exclusively and it is
good to know what it offers.

Here is a table of selected standard-library headers, al supplying declarations in
namespace std:

The C++ Programming Language, 4th edition ©2013 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.

96 A Tour of C++: Containersand Algorithms Chapter 4
Selected Standard Library Headers

<algorithm> copy(), find(), sort() 832.2 8is0.25
<array> array §34.2.1 8is0.23.3.2
<cmath> sqrt(), pow() §39.3 8is0.26.8
<complex> complex, sqrt(), pow() §39.4 8is0.26.8
<fstream> fstream, ifstream, ofstream 837.2.1 8is0.27.9.1
<future> future, promise 85.3.5 8is0.30.6
<jostream> istream, ostream, cin, cout 837.1 8is0.27.4
<iterator> back_inserter(), reverse_iterator, begin() 833.2 8is0.24.3
<limits> numeric_limits §39.2 8is0.18.3
<list> list §31.4.2 8is0.23.3.5
<map> map, multimap §31.4.3 8is0.23.4.4
<memory> unique_ptr, shared_ptr, allocator 85.2.1 8is0.20.6
<mutex> mutex, timed_mutex, recursive_mutex 840.6.1 8is0.30.4
<regex> regex, smatch Chapter 36 8is0.28.8
<set> set, multiset 831.4.3 8is0.23.4.6
<sstream> istrstream, ostrstream 837.2.2 8is0.27.8
<string> string, basic_string Chapter 35 8is0.21.3
<thread> thread 85.3.1 8is0.30.3
<unordered_map> unordered_map, unordered_multimap 8§31.4.3.2 8is0.23.5.4
<utility> move(), swap(), pair 834.9 8is0.20.1
<valarray> valarray, slice, gslice 839.5 8is0.26.6
<vector> vector 831.2 8is0.23.3.6

Thislisting is far from complete, see 830.2 for more information.

4.2 Strings [tour3.string]

The standard library provides a string type to complement the string literals. The string
type provides a variety of useful string operations, such as concatenation. For example:

string compose(const string& hame, const string& domain)

return name + '@’ + domain;

}

auto addr = compose("dmr","bell-labs.com");

Here, addr is initialized to the character sequence dmr@bell-labs.com. ‘“Addition” of
strings means concatenation. You can concatenate a string, a string literal, a C-style string,
or acharacter to astring. The standard string has a move constructor so returning even long
strings by valueis efficient (83.3.2).

In many applications, the most common form of concatenation is adding something to
the end of astring. Thisisdirectly supported by the += operation. For example:

The C++ Programming Language, 4th edition ©2013 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.

Section 4.2 Strings 97

void m2(string& s1, string& s2)
{

sl=sl1l+"'\n"; [/l append newline
s2 +="\n’; /l append newline

}

The two ways of adding to the end of a string are semantically equivalent, but | prefer the
latter because it is more explicit about what it does, more concise, and possibly more effi-
ciently implemented.

A string is mutable. 1n addition to = and +=, subscripting (using [J) and substring opera-
tions are supported. The standard-library string is described in Chapter 35. Among other
useful features, it provides the ability to manipulate substrings. For example:

string name = "Niels Stroustrup”;

void m3()

{
string s = name.substr(6,10); /I s = "Stroustrup"
name.replace(0,5,"nicholas"); /l name becomes "nicholas Stroustrup"
name[0] = 'N’; /l name becomes "Nicholas Stroustrup”

}

The substr() operation returns a string that is a copy of the substring indicated by its argu-
ments. The first argument is an index into the string (a position), and the second argument
is the length of the desired substring. Since indexing starts from 0, s gets the value Strous-
trup.

The replace() operation replaces a substring with a value. In this case, the substring
starting at 0 with length 5 is Niels; it is replaced by Nicholas. Thus, the final value of name
is Nicholas Stroustrup. Note that the replacement string need not be the same size as the
substring that it is replacing.

Naturally, strings can be compared against each other and against string literals. For
example:

string incantation;

void respond(const string& answer)

{ if (answer == incantation) {
Il perform magic
else if (answer == "yes") {
...
}
...
}

The string library is described in Chapter 35. The most common techniques for imple-
menting string are presented in the String example (819.3).

The C++ Programming Language, 4th edition ©2013 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.

98 A Tour of C++: Containersand Algorithms Chapter 4

4.3 Stream |/O [tour3.streams]

The standard library provides formatted character input and output through the iostream
library. The input operations are typed and extensible to handle user-defined types. This
section isavery brief introduction to the use of iostreams; Chapter 37 is a reasonably com-
plete description of the iostream library facilities.

Other forms of user interaction, such as graphical 1/0, are handled through libraries
that are not part of the | SO standard and therefore not described here.

4.3.1 Output [tour3.ostream]

The I/O stream library defines output for every built-in type. Further, it is easy to define
output of a user-defined type (84.3.4). The operator << (*‘put t0”") is used as an output
operator on objects of type ostream; cout is the standard output stream and cerr is the stan-
dard stream for reporting errors. By default, values written to cout are converted to a
sequence of characters. For example, to output the decimal number 10, we can write:

void f()
{

cout << 10;
}

This places the character 1 followed by the character 0 on the standard output stream.
Equivalently, we could write:

void g()
int i {10},
cout << i;
}
Output of different types can be combined in the obvious way:
void h(int i)
cout << "the value of i is ";
cout << i;
cout <<'\n’;

}
For h(10), the output will be
the value of i is 10

People soon tire of repeating the name of the output stream when outputting severa
related items. Fortunately, the result of an output expression can itself be used for further
output. For example:

void h2(int i)

{

}

cout << "the value of i is " << i << '\n’;

The C++ Programming Language, 4th edition ©2013 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.

Section 4.3.1 Output 99

Thish2() produces the same output as h().
A character constant is a character enclosed in single quotes. Note that a character is
output as a character rather than as anumerical value. For example:

void k()

{
intb ="b’; I/l note: char implicitly converted to int
charc="c};

cout<<'a'<<b<<g;

}

The integer value of the character "o’ is 98 (in the ASCII encoding used on the C++ imple-
mentation that | used), so thiswill output agsc.

4.3.2 Input [tour3.istream]

The standard library offers istreams for input. Like ostreams, istreams deal with character
string representations of built-in types and can easily be extended to cope with user-
defined types.

The operator >> (““get from™) is used as an input operator; cin is the standard input
stream. The type of the right-hand operand of >> determines what input is accepted and
what is the target of the input operation. For example:

void f()
{
inti;
cin>>i; //read an integerinto i

double d;
cin >>d; //read a double-precision floating-point number into d

}

This reads a number, such as 1234, from the standard input into the integer variablei and a
floating-point number, such as 12.34e5, into the double-precision floating-point variable d.

4.3.3 string /O [tour3.stringio]

Often, we want to read a sequence of characters. A convenient way of doing that is to
read into astring. For example:

int main()

{ .
string str;
cout << "Please enter your name\n";
cin >> str;

cout << "Hello, " << str << "I\n";

}
If you typein Eric the response is

Hello, Eric!

The C++ Programming Language, 4th edition ©2013 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.

100 A Tour of C++: Containersand Algorithms Chapter 4

By default, a whitespace character (87.3.2), such as a space, terminates the read, so if you
enter Eric Bloodaxe pretending to be the ill-fated king of York, the responseis still

Hello, Eric!

You can read a whole line (including the terminating newline character) using the getline()
function. For example:

int main()

cout << "Please enter your name\n";
string str;

getline(cin,str);

cout << "Hello, " << str << "I\n";

}
With this program, the input Eric Bloodaxe Yyields the desired output:
Hello, Eric Bloodaxe!

The newline that terminated the lineis discarded, so cin isready for the next input line.

The standard strings have the nice property of expanding to hold what you put in them;
you don'’t have to precalculate a maximum size. So, if you enter a couple of megabytes of
semicolons, the program will echo pages of semicolons back at you.

4.3.4 1/0 of User-defined Types [tour3.udtio]

In addition to the 1/0 of built-in types and standard strings, the iostream library allows pro-
grammers to define I/O for their own types. For example, consider a simple type Entry that
we might use to represent entries in a telephone book:

struct Entry {
string name;
int number;

h
We can define a smple output operator to write an Entry using a {"name",number} format
similar to the one we use for initialization in code:

ostream& operator<<(ostreamé& 0s, const Entry& e)

{

}

A user-defined output operator takes its output stream (by reference) as its first argument
and returnsit asitsresult. See 837.4.2 for details.

The corresponding input operator is more complicated because it has to check for cor-
rect formatting and deal with errors:

return os << "{\"* << e.name << "\", " << e.number << "\'}";

The C++ Programming Language, 4th edition ©2013 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.

Section 4.3.4 I/0O of User-defined Types 101

istream& operator>>(istreamé& is, Entry& e)
/I read { "name" , number } pair. Note: formatted with {" ", and }

{
char c, c2;
if (is>>c && c=={" && is>>c2 && c2=="") { // start with a {"
string name; / the default value of a string is the empty string: ™"
while (is.get(c) && c!="" /I anything before a " is part of the name
name+=c;
if (is>>c && ¢==",) {
int number = 0;
if (is>>number>>c && c=="}) { // read the number and a }
e = {name,number}; /[assign to the entry
return is;
}
}
is.setf(ios_base::failbit); /I register the failure in the stream
return is;
}

An input operation returns a reference to its istream which can be used to test if the opera-
tion succeeded. For example, when used as a condition cin>>c means, did we succeed at
reading from cin into ¢?

The is>>c skips whitespace by default, but is.get(c) does not so that this Entry-input
operator ignores (skips) whitespace outside the name string, but not within it. For exam-
ple:

{"John Marwood Cleese" , 123456 }

{"Michael Edward Palin",987654}

We can read such a pair of values from input into an Entry like this:

for (Entry ee; cin>>ee;) // read from cin into ee
cout<<ee <<'\n’; /[write ee to cout

See 837.4.1 for more technical details and techniques for writing input operators for user-
defined types. See 85.5 and Chapter 36 for a more systematic technique for recognizing
patterns in streams of characters (regular expression matching).

4.4 Containers [tour3.stl]

Much computing involves creating collections of values and then manipulating such col-
lections. Reading charactersinto astring and printing out the string is asimple example. A
class with the main purpose of holding objectsis commonly called a container. Providing
suitable containers for a given task and supporting them with useful fundamental opera-
tions are important steps in the construction of any program.

The C++ Programming Language, 4th edition ©2013 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.

102 A Tour of C++: Containersand Algorithms Chapter 4

To illustrate the standard library containers, consider a simple program for keeping
names and telephone numbers. Thisisthe kind of program for which different approaches
appear “‘simple and obvious’ to people of different backgrounds. The Entry class from
84.3.4 can be used to hold a ssimple phone book entry. Here, we deliberately ignore many
real-world complexities, such as the fact that many phone numbers do not have a simple
representation as a 32-hit int.

4.4.1 vector [tour3.vector]

The most useful standard library container is vector. A vector is a sequence of elements of
agiventype. The elements are stored contiguously in memory:

vector:
elem:| —_| 0: 1 2: 3. 4. 5

s [6] T [[T T]

The Vector examples in 83.2.3 and 83.4 give an idea of the implementation of vector and
§13.6 and §31.2 provide an exhaustive discussion.
We can initialize a vector with a set of values of its element type:

vector<Entry> phone_book = {
{"David Hume",123456},
{"Karl Popper",234567},
{"Bertrand Arthur William Russell",345678}

b
Elements can be accessed through subscripting:
void print_book(vector<Entry>& book)

for (inti = 0; i'=book.size(); ++i)
cout << book([i] << \n’;
}
As usual, indexing starts at 0 so that book[0] holds the entry for David Hume. The vector
member function size() gives the number of elements.
The elements of a vector (obviously) constitute a range, so we can use the simpler
range-for loop (82.2.5):

void print_book(vector<Entry>& book)

for (const auto& x : book) // for "auto" see 82.2.2
cout << x << '\n’;

}
When we define avector, we give it aninitial size (initial number of elements):

The C++ Programming Language, 4th edition ©2013 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.

Section 4.4.1 vector 103

vector<int>vl1 ={1,2,3,4}; Il size is 4

vector<string> v2; /I size is O;
vector<Shapex*> v3(23); /I size is 23; initial element value: nullptr
vector<double> v4(32,9.9); /I size is 32; initial element value: 9.9

An explicit size is enclosed in ordinary parentheses, e.g., (23), and by default the elements
are initialized to the element type's default value (e.g., nullptr for pointers and o for num-
bers). If you don’t want the default value, you can specify one as a second argument (e.g.,
9.9 for the 32 elements of v4).

The initial size can be changed. One of the most useful operations on a vector is
push_back(), which adds a new element at the end of a vector, increasing its size by 1. For
example:

for (Entry e; cin>>e;)
phone_book.push_back(e);

This reads Entrys from the standard input into phone_book until either the end of input (e.g.,

the end of afile) isreached or the input operation encounters aformat error. The standard-

library vector is implemented so that growing avector by repeated push_back()sis efficient.
A vector isasingle object that can be assigned. For example:

void f(vector<Entry>& v)

{
vector<Entry> v2 = phone_book;
VvV =V2;
...

}

Assigning a vector involves copying its elements. Thus, after the initialization and assign-
ment in f(), v and v2 each holds a separate copy of every Entry in the phone book. When a
vector holds many elements, such innocent-looking assignments and initializations can be
prohibitively expensive. Where copying is undesirable, references or pointers (87.2; §87.7)
or move operations (83.3.2; §17.5.2) should be used.

4.4.1.1 Elements|[tour3.elements]

Like al standard-library containers, vector is a container of elements of some type T; that
is, a vector<T>. Just about any type qualifies as an element type: built-in numeric types
(such as char, int, and double), user-defined types (such as string, Entry, list<int>, and
Matrix<double,2>) and pointers (such as const chars, Shape*, and doublex). When you insert
anew element, its value is copied into the container. For example, when you put an inte-
ger with the value 7 into a container, the resulting el ement really hasthe value 7. The ele-
ment is not areference or a pointer to some object containing 7. This makes for nice com-
pact containers with fast access. For people who care about memory sizes and run-time
performance thisis critical.

The C++ Programming Language, 4th edition ©2013 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.

104 A Tour of C++: Containersand Algorithms Chapter 4

4.4.1.2 Range Checking [tour3.range]

The standard library vector does not guarantee range checking (831.2.2). For example:
vector<Entry> phone_book(1000);

int i = phone_book[2001].number; // 2001 is out of range

That initialization is likely to place some random value in i rather than giving an error.
Thisis undesirable and out-of-range errors are a common problem. Consequently, | often
use a simple range-checking adaptation of vector:

template<typename T>
class Vec : public std::vector<T> {
public:
using vector<T>::vector; // use the constructors from vector
/I (under the name Vec); see §20.3.5.1

T& operator[](int i) { return vector<T>::at(i); } /I range-checked
const T& operator[J(int i) const { return vector<T>::at(i); } // range-checked
/I for const objects; §3.2.1.1

h
Vec inherits everything from vector except for the subscript operations that it redefines to
do range checking. The at() operation is a vector subscript operation that throws an excep-
tion of type out_of_range if its argument is out of the vector'srange (82.4.3.1, §31.2.2).

An out-of-range access will throw an exception that the user can catch. For example:

void f(Vec<Entry>& book)

{
try {
book[book.size()] = {"Joe",999999}; // will throw an exception

catch (out_of_range) {
cout << "range error\n";
}

}

The exception will be thrown, and then caught (82.4.3.1; Chapter 13). If the user doesn’t
catch an exception, the program will terminate in a well-defined manner rather than pro-
ceeding or failing in an undefined manner. One way to minimize surprises from uncaught
exceptions is to use amain() with atry-block asits body:

The C++ Programming Language, 4th edition ©2013 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.

Section 4.4.1.2 Range Checking 105

int main()

try {
I/l your code

catch (out_of_range) {
cerr << "range error\n";

}
catch (...) {

cerr << "unknown exception thrown\n";
}

This provides default exception handlers so that if we fail to catch some exception, an
error message is printed on the standard error-diagnostic output stream cerr (837.1).

Some implementations save you the bother of defining Vec (or equivalent) by providing
arange-checked version of vector (e.g., as a compiler option).
4.4.2 list [tour3.list]

The standard-library offers adoubly-linked list called list:

list:

4 | Jink link link linkSee—»

We use a list for sequences where we want to insert and delete elements without moving
other elements. Insertion and deletion of phone book entries could be common, so a list
could be appropriate for representing a simple phone book. For example:

list<Entry> phone_book = {
{"David Hume",123456},
{"Karl Popper",234567},
{"Bertrand Arthur William Russell",345678}
h
When we use a linked list, we tend not to access elements using subscripting the way we
commonly do for vectors. Instead, we might search the list looking for an element with a
given non-zero value. To do this, we take advantage of the fact that allist is a sequence as
described in 84.5:

int get_number(const string& s)

{

for (const auto& x : phone_book)
if (x.name==s)
return x.number;
return 0; // use O to represent "number not found"

}
The search for s starts at the beginning of the list and proceeds until either s isfound or the

The C++ Programming Language, 4th edition ©2013 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.

106 A Tour of C++: Containersand Algorithms Chapter 4

end is reached.

Sometimes, we need to identify an element in alist. For example, we may want to
delete it or insert a new entry before it. To do that we use an iterator: alist iterator identi-
fies an element of alist and can be used to iterate through a list (hence its name). Every
standard library container provides the functions begin() and end(), which return an iterator
to the first and to one-past-the-last element, respectively (84.5; §33.1.1). Using iterators
explicitly, we can — less elegantly — write the get_number() function like this:

int get_number(const string& s)

for (auto p = phone_book.begin(); p!'=phone_book.end(); ++p)
if (p—>name==s)
return p—>number;
return O; // use O to represent "number not found"

}

In fact, this is roughly the way the terser and less error-prone range-for loop is imple-
mented by the compiler. Given an iterator p, =p is the element to which it refers, ++p
advances p to refer to the next element, and when p refers to a class with a member m then
p—>m is equivalent to (xp).m.

Adding elements to alist and removing elements from alist is easy:

void f(const Entry& ee, list<Entry>::iterator p, list<Entry>::iterator q)

{

phone_book.insert(p,ee); /[add ee before the element referred to by p
phone_book.erase(q); /I remove the element referred to by q

}

For a more compl ete description of insert() and erase(), see 831.3.7.

Note that these list examples could be written identically using vector and (surprisingly,
unless you understand machine architecture) perform better with a small vector than with a
small list. When al we want is a sequence of elements, we have a choice between using a
vector and alist. Unless you have areason not to, use avector. A vector performs better for
traversal (e.g., find() and count()) and for sorting and searching operations (e.g., sort() and
binary_search()).

4.4.3 map [tour3.map]

Writing code to look up anamein alist of (name,number) pairs is quite tedious. In addi-
tion, alinear search isinefficient for all but the shortest lists. The standard library offers a
search tree caled map:

The C++ Programming Language, 4th edition ©2013 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.

Section 4.4.3 map 107

map:
.y /Iinké/
4| alinkg
key:
value: links
links

In other contexts, amap is known as an associative array or adictionary. It isimplemented
as a balanced binary tree.
The standard-library map (831.4.3) is a container of pairs of values optimized for
lookup. For example:
map<string,int> phone_book {
{"David Hume",123456},

{"Karl Popper",234567},
{"Bertrand Arthur William Russell",345678}

b
When indexed by a value of its first type (called the key) a map returns the corresponding
value of the second type (called the value or the mapped type). For example:

int get_number(const string& s)

return phone_book]s];

}

In other words, subscripting a map is essentially the lookup we called get_number(). If a
key isn't found, it is entered into the map with a default value for its value. The default
value for an integer type is 0; the value | just happened to choose represents an invalid
telephone number.

If we wanted to avoid entering invalid numbers into our phone book, we could use
find() and insert() instead of [] (831.4.3.1).

4.4.4 Unordered_map [tour3.unorderedmap]

The cost of amap lookup is O(log(n)) where n is the number of elementsin the map. That's
pretty good. For example, for a map with 1,000,000 elements, we perform only about 20
comparisons and indirections to find an element. However, in many cases, we can do bet-
ter by using a hashed lookup rather than comparison using an ordering function, such as <.
The standard library hashed containers are referred to as ““unordered” because they don’t
require an ordering function:

The C++ Programming Language, 4th edition ©2013 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.

108 A Tour of C++: Containersand Algorithms Chapter 4

unordered_map:| rep—

hash table: ‘H ‘ ‘

For example, we can use an unordered_map from <unordered_map> to implement our phone
book:

unordered_map<string,int> phone_book {
{"David Hume",123456},
{"Karl Popper",234567},
{"Bertrand Arthur William Russell",345678}

h
Like for amap, we can subscript an unordered_map:

int get_number(const string& s)

return phone_book]s];

}

The standard-library unordered_map provides a default hash function for strings. 1f neces-
sary, you can provide your own (831.4.3.4).

4.45 Container Overview [tour3.stdcontainer]

A map, alist, and a vector can each be used to represent a phone book. However, each has
strengths and weaknesses. For example, subscripting and traversing a vector is cheap and
easy. On the other hand, vector elements are moved when we insert or remove elements;
list has exactly the opposite properties. A map resembles a list of (key,value) pairs except
that it is optimized for finding values based on keys. Please note that a vector is usualy
more efficient than a list for short sequences of small elements (even for insert() and
erase()). | recommend the standard-library vector as the default type for sequences of ele-
ments: You need areason to choose another.

The standard library provides some of the most general and useful container types to
allow the programmer to select a container that best serves the needs of an application:

The C++ Programming Language, 4th edition ©2013 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.

Section 4.4.5 Container Overview 109

Standard Container Summary
vector<T> A variable-sized vector (831.2)
list<T> A doubly-linked list (831.4.2)
forward_list<T> A singly-linked list (§31.4.2)
set<T> A set (831.4.3)
multiset<T> A set in which avalue can occur many times (831.4.3)
map<K,V> An associative array (831.4.3)
multimap<K,V> A map in which akey can occur many times (831.4.3)
unordered_map<K,V> A map using a hashed lookup (831.4.3.2)
unordered_multimap<K,vV> A multimap using a hashed |ookup (§31.4.3.2)
unordered_set<T> A set using a hashed lookup (§31.4.3.2)
unordered_multiset<T> A multiset using a hashed lookup (831.4.3.2)

The unordered containers are optimized for lookup with a key (often a string); in other
words, they are implemented using hash tables.

The standard containers are described in §31.2. The containers are defined in
namespace std and presented in headers <vector>, <list>, <map>, etc. (84.1.2, 830.2). In
addition, the standard library provides container adapters queue<T> (831.5.2), stack<T>
(831.5.1), deque<T> (831.2), and priority_queue<T> (831.5.3). The standard library also
provides more specialized container-like types, such as a fixed-sized array array<T,N>
(834.2.1) and bitset<N> (§34.2.2).

The standard containers and their basic operations are designed to be similar from a
notational point of view. Furthermore, the meanings of the operations are equivalent for
the various containers. Basic operations apply to every kind of container for which they
make sense and can be efficiently implemented. For example,

* begin() and end() give iteratorsto the first and one-beyond-last elements, respectively

» push_back() can be used (efficiently) to add elements to the end of avector as well as

for alist

* size() returns the number of elements.

This notational and semantic uniformity enables programmers to provide new container
types that can be used in a very similar manner to the standard ones. The range-checked
vector, Vector (82.3.2, §2.4.3.1), is an example of that. The uniformity of container inter-
faces also allows us to specify algorithms independently of individual container types.

4.5 Algorithms [tour3.algorithms]

A data structure, such as alist or a vector, is not very useful on its own. To use one, we
need operations for basic access such as adding and removing elements (as is provided for
list and vector). Furthermore, we rarely just store objects in a container. We sort them,
print them, extract subsets, remove elements, search for objects, etc. Consequently, the
standard library provides the most common agorithms for containers in addition to pro-
viding the most common container types. For example, the following sorts a vector and
places a copy of each unique vector element on alist:

The C++ Programming Language, 4th edition ©2013 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.

110 A Tour of C++: Containersand Algorithms Chapter 4

bool operator<(const Entry& x, const Entry& y) // less than

{
return x.name<y.name; I/l order Entrys by their Names
}
void f(vector<Entry>& vec, list<Entry>& Ist)
{
sort(vec.begin(),vec.end()); Il use < for order
unique_copy(vec.begin(),vec.end(),Ist.begin()); // don’t copy adjacent equal elements
}

The standard algorithms are described in Chapter 32. They are expressed in terms of
sequences of elements. A sequence is represented by a pair of iterators specifying the first
element and the one-beyond-the-last element:

iterators: begin() end()

demerts Eﬂ% /

In the example, sort() sorts the sequence from ve.begin() t0 ve.end() — which just happens to
be all the elements of avector. For writing, you need only to specify the first element to be
written. If more than one element is written, the elements following that initial element
will be overwritten. Thus, to avoid errors, Ist must have at least as many elements as there
are unique valuesin vec.

If we wanted to place the unigue elementsin a new container, we could have written:

list<Entry> f(vector<Entry>& vec)

{
list<Entry> res;
sort(vec.begin(),vec.end());
unique_copy(vec.begin(),vec.end(),back_inserter(res)); /I append to res
return res;

}

A back_inserter() adds elements at the end of a container, extending the container to make
room for them (833.2.2). Thus, the standard containers plus back_inserter()s eliminate the
need to use error-prone, explicit C-style memory management using realloc() (831.5.1).
The standard-library list has a move constructor (83.3.2 ,817.5.2) that makes returning res
by value efficient (even for lists of thousands of elements).

If you find the pair-of-iterators style of code, such as sort(ve.begin(),ve.end()) tedious,
you can define container version of the algorithms and write sort(ve) (84.5.6).

The C++ Programming Language, 4th edition ©2013 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.

Section 4.5.1 Useof Iterators 111

45,1 Useof Iterators [tour3.iteruse]

When you first encounter a container, a few iterators referring to useful elements can be
obtained; begin() and end() are the best examples of this. In addition, many agorithms
return iterators. For example, the standard algorithm find looks for a value in a sequence
and returns an iterator to the element found:

bool has_c(const string& s, char c) /I does s contain the character c?
{
auto p = find(s.begin(),s.end(),c);
if (p!=s.end())
return true;
else
return false;

}
Note that find returns end() to indicate ‘‘not found.” An equivalent, shorter, definition of
has_c() is:
bool has_c(const string& s, char c) /I does s contain the character c?
return find(s.begin(),s.end(),c)!=s.end();
}

A more interesting exercise would be to find the location of al occurrences of a character
in astring. We can return the set of occurrences as a vector of string iterators. Assuming
that we would like to modify the locations found, we pass a non-const string:

vector<string::iterator> find_all(string& s, char c) Il find all occurrences of cin's

{

vector<string::iterator> res;
for (auto p = s.begin(); p!=s.end(); ++p)
if (*p::c)
res.push_back(p);
return res;

}

We iterate through the string using a conventional loop, moving the iterator p forward one
element at atime using ++ and looking at the elements using the dereference operator .
We could test find_all() like this:

void test()
string m {"Mary had a little lamb"};
for (auto p : find_all(m,a’))
if (xp!="a’)
cerr << "a bug\n";

}
That call of find_all() could be graphically represented like this:

The C++ Programming Language, 4th edition ©2013 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.

112 A Tour of C++: Containersand Algorithms Chapter 4

f f ' f

Mafr]y[[hlafd] Ja] [I]i]t][t[I]e] [I]a]m]b]

The arrows indicate the values of the result vector.
Iterators and standard algorithms will work equivalently on every standard container
for which their use makes sense. Consequently, we could generalize find_all():

template<typename C, typename V>
vector<typename C::iterator> find_all(C& c, V v) /I find all occurrences of vin ¢

vector<typename C::iterator> res;
for (auto p = c.begin(); p!=c.end(); ++p)
if (*p::v)
res.push_back(p);
return res;

}

The "“typename’” is needed to inform the compiler that C’s iterator is supposed to be a type
and not avalue of some type, say, theinteger 7. We can hide thisimplementation detail by
introducing atype dlias (83.4.5) for Iterator:

template<typename T>
using lterator<T> = typename T::iterator;

template<typename C, typename V>
vector<Iterator<C>> find_all(C& c, V v) /I find all occurrences of vin ¢
{

vector<Iterator<C>> res;

for (auto p = c.begin(); p!=c.end(); ++p)

if (xp==v)
res.push_back(p);
return res;
}
We can now write:
void test()
string m {"Mary had a little lamb"};
for (auto p : find_all(m,'a’)) /I p is a string::iterator
if (xp!="a’)

cerr << "string bug\n";

list<double>Id {1.1, 2.2, 3.3, 1.1}
for (auto p : find_all(ld,1.1))
if (+p!=1.1)
cerr << "list bug\n";

The C++ Programming Language, 4th edition ©2013 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.

Section 4.5.1 Useof Iterators 113

vector<string> vs { "red", "blue", "green”, "green”, "orange", "green" };
for (auto p : find_all(vs,"green™))
if (*p!="green")
cerr << "vector bug\n";

for (auto p : find_all(vs,"green™))
*p = "vert",
...
}

Iterators are used to separate algorithms and containers. An algorithm operates on its data
through iterators and knows nothing about the container in which the elements are stored.
Conversely, a container knows nothing about the algorithms operating on its elements; all
it does is to supply iterators upon request (e.g., begin() and end()). The result is very gen-
eral and flexible software.

4.5.2 lterator Types [tour3.iter]

What are iterators really? Any particular iterator is an object of some type. There are,
however, many different iterator types, because an iterator needs to hold the information
necessary for doing its job for a particular container type. These iterator types can be as
different as the containers and the specialized needs they serve. For example, a vector's
iterator could be an ordinary pointer, because a pointer is quite a reasonable way of refer-
ring to an element of avector:

iterator: p

vector:]P|i|e|t| \H|e|i|n\

Alternatively, a vector iterator could be implemented as a pointer to the vector plus an
index:

iterator: (start == p, position == 3)
|

vector:]P|i|e|t| \H|e|i|n\

Using such an iterator would allow range checking.

A list iterator must be something more complicated than a simple pointer to an element
because an element of alist in general does not know where the next element of that list is.
Thus, alist iterator might be a pointer to alink:

The C++ Programming Language, 4th edition ©2013 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.

114 A Tour of C++: Containersand Algorithms Chapter 4

iterator: p
list: link link link link |—» ...
elements: P i e t

What is common for all iterators is their semantics and the naming of their operations.
For example, applying ++ to any iterator yields an iterator that refers to the next element.
Similarly, = yields the element to which the iterator refers. In fact, any object that obeys a
few simple rules like these is an iterator (833.1.4). Furthermore, users rarely need to know
the type of a specific iterator; each container *‘knows’ its iterator types and makes them
available under the conventional names iterator and const_iterator. For example,
list<Entry>::iterator iS the general iterator type for list<Entry>. We rarely have to worry about
the details of how that type is defined.

45.3 Stream Iterators [tour3.ioiterators)

Iterators are a general and useful concept for dealing with sequences of elementsin con-
tainers. However, containers are not the only place where we find sequences of elements.
For example, an input stream produces a sequence of values and we write a sequence of
values to an output stream. Consequently, the notion of iterators can be usefully applied to
input and output.

To make an ostream_iterator, we need to specify which stream will be used and the type
of objects written to it. For example, we can define an iterator that refers to the standard
output stream, cout:

ostream_iterator<string> oo {cout};

The effect of assigning to *oo isto write the assigned value to cout. For example:

int main()
*00 = "Hello, "; /I meaning cout<<"Hello, "
++00;
*00 = "world!\n"; /l meaning cout<<"world\n"
}

This is yet another way of writing the canonical message to standard output. The ++oo is
done to mimic writing into an array through a pointer.

Similarly, an istream_iterator is something that allows us to treat an input stream as a
read-only container. Again, we must specify the stream to be used and the type of values
expected:

istream_iterator<string> ii {cin};

Input iterators are used in pairs representing a sequence, so we must provide an
istream_iterator to indicate the end of input. Thisisthe default istream_iterator:

The C++ Programming Language, 4th edition ©2013 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.

Section 4.5.3 Stream Iterators 115

istream_iterator<string> eos {};

Typically, istream_iterators and ostream_iterators are not used directly. Instead, they are pro-
vided as arguments to algorithms. For example, we can write a simple program to read a
file, sort the words read, eliminate duplicates, and write the result to another file:

int main()

string from, to;

cin >> from >> to; /I get source and target file names
ifstream is {from}; /I input stream for file "from"
istream_iterator<string> ii {is}; /I input iterator for stream
istream_iterator<string> eos {}; I/l input sentinel

ofstream os{to}; I/l output stream for file "to"

ostream_jterator<string> oo {0s,"\n"}; // output iterator for stream

vector<string> b {ii,eos}; /I b is a vector initialized from input [ii:eo0s)
sort(b.begin(),b.end()); Il sort the buffer

unique_copy(b.begin(),b.end(),00); // copy buffer to output, discard replicated values

return lis.eof() || los; /I return error state (82.2.1, §37.3)

}

An ifstream iS an istream that can be attached to a file, and an ofstream iS an ostream that can
be attached to a file. The ostream_iterator’s second argument is used to delimit output val-
ues.
Actually, this program is longer than it needs to be. We read the strings into a vector,
then we sort() them, and then we write them out eliminating duplicates. A more elegant
solution is not to store duplicates at all. This can be done by keeping the strings in a set,
which does not keep duplicates and keeps its elements in order (§31.4.3). That way, we
could replace the two lines using a vector with one using a set and replace unique_copy()
with the simpler copy():

set<string> b {ii,eos}; /I collect strings from input
copy(b.begin(),b.end(),00); /I copy buffer to output

We used the names ii, eos, and oo only once after their definition, so we could further
reduce the size of the program:

int main()

{
string from, to;
cin >> from >> to; /I get source and target file names
ifstream is {from}; Il input stream for file "from"
ofstream os {to}; /I output stream for file "to"

The C++ Programming Language, 4th edition ©2013 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.

116 A Tour of C++: Containersand Algorithms Chapter 4

set<string> b {istream_iterator<string>{is},istream_iterator<string>{}}; // read input
copy(b.begin(),b.end(),ostream_iterator<string>{os,"\n"}); /I copy to output

return lis.eof() || los; I/l return error state (82.2.1, §37.3)

}

It is a matter of taste and experience whether or not this last simplification improves read-
ability. If your tastes lean toward the very terse, you can further eliminate the name os.

4.5.4 Predicates [tour3.predicates]

In the examples above, the algorithms have simply “built in” the action to be done for
each element of a sequence. However, we often want to make that action a parameter to
the algorithm. For example, the find algorithm (832.3) provides a convenient way of 100k-
ing for a specific value. A more general variant looks for an element that fulfills a speci-
fied requirement, a predicate (83.4.2). For example, we might want to search a map for
the first value larger than 42. A map allows us to access its elements as a sequence of
(key,value) pairs, so we can search a maps<string,int>'S sequence for a pair<const string,int>
where theint is greater than 42:

void f(map<string,int>& m)

{
auto p = find_if(m.begin(),m.end(),Greater_than{42});
...

}

Here, Greater_than is a function object (83.4.3) holding the value (42) to be compared
against:
struct Greater_than {
int val;

Greater_than(int v) : val{v} { }
bool operator()(const pair<string,int>& r) { return r.second>val; }

h
Alternatively, we could use alambda expression (83.4.3):

int cxx = count_if(m.begin(), m.end(),
[I(const pair<string,int>& r) { return r.second>42; });

45.5 Algorithm Overview [tour3.algolist]

What is an algorithm? A general definition of an algorithm is **a finite set of rules which
gives a sequence of operations for solving a specific set of problems [and] has five impor-
tant features. Finiteness ... Definiteness ... Input .. Output ... Effectiveness”
[Knuth,1968,81.1]. In the context of the C++ standard library, an agorithm is a function
template operating on sequences of elements.

The standard library provides dozens of agorithms. The algorithms are defined in
namespace std and presented in the <algorithm> header. These standard-library algorithms

The C++ Programming Language, 4th edition ©2013 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.

Section 4.5.5 Algorithm Overview 117

all take sequences as inputs (84.5). A half-open sequence from b to e is referred to as
[b:e). Hereareafew | have found particularly useful:

Selected Standard Algorithms

p=find(b,e,x) pisthefirst pin[b:e) sothat =p==x
p=find_if(b,e,f) p isthefirst p in[b:e) so that f(+p)==true
n=count(b,e,x) n isthe number of elements =q in [b:e) so that =q==x
n=count_if(b,e,f) n isthe number of elements =q in [b:e) so that f(xq,x)
replace(b,e,v,v2) Replace elements «q in [b:e) so that xq==v by v2
replace_if(b,e,f,v2) Replace elements *q in [b:e) so that f(xq) by v2
p=copy(b,e,out) Copy [b:e) to [out:p)
p=copy_if(b,e,out,f) Copy elements =q from [b:e) so that f(+q) to [out:p)
p=unique_copy(b,e,out) Copy [b:e) to [out:p); don't copy adjacent duplicates
sort(b,e) Sort elements of [b:e) using < as the sorting criterion
(p1,p2)=equal_range(b,e,v) [pl:p2) isthe subsequence of the sorted sequence [b:e)

with the value v; basically a binary search for v
p=merge(b,e,b2,e2,0ut) Merge two sorted sequences [b:e) and [b2:e2) into [out:p)

These algorithms, and many more (see Chapter 32), can be applied to elements of contain-
ers, strings, and built-in arrays.
4.5.6 Container Algorithms [tour3.container-algo]

A sequence is defined by a pair of iterators [beginiend). This is general and flexible, but
most often, we apply an algorithm to a sequence that is the contents of a container. For
example:

sort(v.begin(),v.end());
Why don’t we just say sort(v)? We can easily provide that shorthand:

namespace Estd {
using namespace std;

template<class C>
void sort(C& c)

sort(c.begin(),c.end());

The C++ Programming Language, 4th edition ©2013 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.

118 A Tour of C++: Containersand Algorithms Chapter 4

template<class C, class Pred>
void sort(C& c, Pred p)
{

}
...

sort(c.begin(),c.end(),p);

}

| put the container versions of sort() (and other algorithms) into their own namespace Estd
(“"extended std’’) to avoid interfering with other programmers uses of and extensions to
std.

4.6 Advice [tour3.advice]

[1] Don't reinvent the wheel; use libraries; 84.1.

[2] Don't believe in magic; understand what your libraries do, how they do it, and at
what cost they do it.

[3] Whenyou have achoice, prefer the standard library over other libraries.

[4] Do not think that the standard library isideal for everything.

[5] Remember to #include the headers for the facilities you use; §4.1.2.

[6] Remember that standard library facilities are defined in namespace std; §4.1.2.

[7] Prefer strings over C-style strings (a char+; §2.2.5) 84.2, 84.3.2.

[8] iostreams are type sensitive, type safe, and extensible; §4.3.

[9] Prefer vector<T>, map<K,T>, and unordered_map<K,T> over T[]; §4.4.

[10] Know your standard containers and their tradeoffs; §4.4.

[11] Use vector asyour default container; 84.4.1.

[12] Prefer compact data structures; 84.4.1.1.

[13] If indoubt, use arange-checked vector (such as Vec); §4.4.1.2.

[14] Use push_back() or back_inserter() to add elementsto a container; 84.4.1, 84.5.

[15] Use push_back() on avector rather than realloc() on an array; 84.5.

[16] Catch common exceptionsin main(); 84.4.1.2.

[17] Know your standard algorithms and prefer them over handwritten loops; §4.5.5.

[18] If iterator use get tedious, define container algorithms; 84.5.6.

The C++ Programming Language, 4th edition ©2013 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.

