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A Tour of C++: Abstraction Mechanisms

Don´t Panic!
– Douglas Adams

• Introduction
• Classes

Concrete Types; Initializing Containers; Abstract Types; Virtual Functions; Class
Hierarchies

• Copy and Move
Copying Containers; Moving Containers; Preventing Copy and Move

• Templates
Parameterized Types; Function Templates; Function Objects; Variadic Templates;
Aliases

• Advice

3.1 Introduction [tour2.intro]

This chapter aims to give you an idea of C++’s support for abstraction and resource man-
agement without going into a lot of detail. This chapter informally presents ways of defin-
ing and using new types (user-defined types). In particular, it presents the basic properties,
implementation techniques, and language facilities used for concrete classes, abstract
classes, and class hierarchies. Templates are introduced as a mechanism for parameteriz-
ing types and algorithms with (other) types and algorithms. Computations on user-defined
and built-in types are represented as functions, sometimes generalized to template func-
tions and function objects. These are the language facilities supporting the programming
styles known as object-oriented programming and generic programming. The next two
chapters follow up by presenting examples of standard-library facilities and their use.
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62 A Tour of C++: Abstraction Mechanisms Chapter 3

The assumption is that you have programmed before. If not, please consider reading a
textbook, such as Programming: Principles and Practice using C++ [Stroustrup, 2009],
before continuing here. Even if you have programmed before, the language you used or
the applications you wrote may be very different from the style of C++ presented here. If
you find this ‘‘lightning tour’’ confusing, skip to the more systematic presentation starting
in Chapter 6.

3.2 Classes [tour2.class]

The central language feature of C++ is the class. A class is a user-defined type provided
to represent a concept in the code of a program. Whenever our design for a program has a
useful concept, idea, entity, etc., we try to represent it as a class in the program so that the
idea is there in the code, rather than just in our head, in a design document, or in some
comments. A program built out of a well chosen set of classes is far easier to understand
and get right than one that builds everything directly in terms of the built-in types. In par-
ticular, classes are often what libraries offer.

Essentially all language facilities beyond the fundamental types, operators, and state-
ments exist to help define better classes or to use them more conveniently. By ‘‘better,’’ I
mean more correct, easier to maintain, more efficient, more elegant, easier to use, easier to
read, and easier to reason about. Most programming techniques rely on the design and
implementation of specific kinds of classes. The needs and tastes of programmers vary
immensely. Consequently, the support for classes is extensive. Here, we will just consider
the basic support for three important kinds of classes:

• concrete classes (§3.2.1)
• abstract classes (§3.2.3)
• classes in class hierarchies (§3.2.5)

An astounding number of useful classes turn out to be of these three kinds. Even more
can be seen as simple variants of these are implemented using combinations of the tech-
niques used for these.

3.2.1 Concrete Types [tour2.concrete]

The basic idea of concrete classes is that they behave ‘‘just like built-in types.’’ For exam-
ple, a complex number type and an infinite-precision integer are much like built-in int,
except of course that they hav e their own semantics and sets of operations. Similarly, a
vector and a str ing are much like built-in arrays, except that they are better behaved (§4.2,
§4.3.3, §4.4.1).

The defining characteristic of a concrete type is that its representation is part of its defi-
nition. That allows implementations to be optimally efficient in time and space. In partic-
ular, it allows us to

• place objects of concrete types on the stack, in statically allocated memory, and in
other objects.

• refer to objects directly (and not just through pointers or references).
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Section 3.2.1 Concrete Types 63

• initialize objects immediately and completely (e.g., by using constructors; §2.3.2).
• copy objects (§3.3).

The representation can be private (as it is for Vector; §2.3.2) and accessible only through
the member functions, but it is present. Therefore, if the representation changes in any
significant way, a user must recompile. This is the price to pay for having concrete types
behave exactly like built-in types. For types that don’t change often, and where local vari-
ables provide much-needed clarity and efficiency, this is acceptable and often ideal. To
increase flexibility, a concrete type can keep major parts of its representation on the free
store and access them through the part stored in the class object itself. That’s the way
vector and str ing are implemented; they can be considered resource handles with carefully
crafted interfaces.

3.2.1.1 An Arithmetic Type [tour2.complex]

The ‘‘classical user-defined arithmetic type’’ is complex:

class complex {
double re, im; // representation: two doubles

public:
complex(double r, double i) :re{r}, im{i} {} // constr uct complex from two scalar s
complex(double r) :re{r}, im{0} {} // constr uct complex from one scalar
complex() :re{0}, im{0} {} // default complex: {0,0}

double real() const { retur n re; }
void real(double d) { re=d; }
double imag() const { retur n im; }
void imag(double d) { im=i; }

complex opera tor+=(complex z) { retur n {re+=z.re, im+=z.im}; } // add to re and im
// and retur n the result

complex opera tor−=(complex z) { retur n {re−=z.re, im−=z.im}; }
complex opera tor∗=(complex); // defined out-of-class somewhere
complex opera tor/=(complex); // defined out-of-class somewhere

};

This is a slightly simplified version of the standard library complex (§3.2.1.1, §39.4). The
class definition itself contains only the operations requiring access to the representation.
Complex has a simple and conventional representation (which for practical reasons has to
be compatible with what Fortran provided 50 years ago) and a lot of conventional opera-
tors. In addition to the logical demands, complex must also be efficient or it will remain
unused. This implies that simple operations must be inlined. That is, simple operations
(such as constructors, +, and imag()) must be implemented without function calls in the
generated machine code. Functions defined in a class are inlined by default. An industrial
strength complex (like the standard library one) would be carefully implemented to do
appropriate inlining.

A constructor that can be invoked without an argument is called a default constructor.
Thus, complex() is complex’s default constructor. By defining a default constructor you
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64 A Tour of C++: Abstraction Mechanisms Chapter 3

eliminate the possibility of unintialized variables of that type.
Note the const specifier on the functions returning the real and imaginary parts. There,

const is used to indicate that a function may not modify the object for which it was
invoked.

Other useful operations can be defined separately from the class definition:

complex opera tor+(complex a, complex b) { retur n a+=b; }
complex opera tor−(complex a, complex b) { retur n a−=b; }
complex opera tor−(complex a) { retur n {−a.real(), −a.imag()}; } // unar y minus
complex opera tor∗(complex a, complex b) { retur n a∗=b; }
complex opera tor/(complex a, complex b) { retur n a/=b; }

bool operator==(complex a, complex b) // equal
{

retur n a.real()==b.real() && a.imag()==b.imag();
}

bool operator!=(complex a, complex b) // not equal
{

retur n !(a==b);
}

complex sqr t(complex);

// ...

Class complex can be used like this:

void f(complex z)
{

complex a {2.3};
complex b {1/a};
complex c {a+z∗complex{1,2.3}};
// ...
if (c != b) c = −(b/a)+2∗b;

}

The compiler converts operators involving complex numbers into appropriate function
calls. For example, c!=b means opera tor!=(c,b) and 1/a means opera tor/(complex{1},a).

User-defined operators (‘‘overloaded operators’’) should be used cautiously and con-
ventionally. The syntax is fixed by the language, so you can’t define a unary /. Also, it is
not possible to change the meaning of an operator for built-in types, so you can’t re-define
+ to subtract ints.

3.2.1.2 A Container [tour2.container]

A container is an object holding a collection of elements, so we call a type like Vector a
container because it is the type of container objects. As defined in §2.3.2, Vector isn’t an
unreasonable container of doubles: it is simple to understand, establishes a useful invariant
(§2.4.3.2), provides range-checked access (§2.4.3.1), and provides size() to allow us to
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Section 3.2.1.2 A Container 65

iterate over its elements. However, it does have a fatal flaw: it allocates elements using
new, but never deallocates them. That’s not a good idea because although C++ defines an
interface for a garbage collector (§34.8), it is not guaranteed that one is available or will
run to make unused memory available for new objects. In some environments you can’t
use a collector and sometimes you prefer more detailed control of construction and de-
struction (§13.6.4) for logical or performance reasons. We need a mechanism to ensure
that the memory allocated by the constructor is deallocated; that mechanism is a de-
structor:

class Vector {
pr ivate:

double∗ elem; // elem points to an array of sz doubles
int sz;

public:
Vector(int s) :elem{new double[s]}, sz{s} // constr uctor: acquire resources
{

for (int i=0;i<s; ++i) elem[i]=0; // initialize elements
}
˜Vector() { delete[] elem; } // destr uctor: release resources

double& operator[](int i);
int size() const;

};

The name of a destructor is the complement operator, ˜, followed by the name of the class;
it is the complement of a constructor. The constructor allocates some memory on the free
store (also called the heap or dynamic store) using the new operator. The destructor cleans
up by freeing that memory using the delete operator. This is all done without intervention
by users of Vector. The users simply create and use Vectors much as they would variables
of built-in types. For example:

void fct(int x)
{

Vector v(x);
// use v
{

Vector v2(2∗x);
// use v and v2

} // v2 is destroyed here
// use v

} // v is destroyed here

The Vector obeys the same rules for naming, scope, allocation, lifetime, etc., as does a
built-in type, such as int and char. For details on how to control the lifetime of an object,
see §6.4.

The constructor/destructor combination is the basis of many elegant techniques and is
in particular the basis for most C++ general resource management techniques (§5.2,
§13.3). Consider a graphical illustration of a Vector:
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6

Vector:
elem:

sz: 0 0 0 0 0 0
0: 1: 2: 3: 4: 5:

The constructor allocates the elements and initializes the Vector members appropriately.
The destructor deallocates the elements. This handle-to-data model is very commonly
used to manage data that can vary in size during the lifetime of an object. The technique
of acquiring resources in a constructor and releasing them in the destructor technique,
known as Resource Acquisition Is Initialization or RAII, allows us to eliminate ‘‘naked
new operations;’’ that is, to avoid allocations in general code and keep them buried inside
the implementation of well-behaved abstractions. Similarly ‘‘naked delete operations’’
should be avoided. Avoiding naked new and naked delete makes code far less error-prone
and far easier to keep free of resource leaks (§5.2).

3.2.2 Initializing Containers [tour2.initializer_list]

A container exists to hold elements, so obviously we need convenient ways of getting ele-
ments into a container. We can handle that by creating a Vector with an appropriate num-
ber of elements and then assign to them, but typically other ways are more elegant. Here,
I mention two favorites:

• initializer-list constructor: initialize with a list of elements
• push_back(): add a new element at the end (at the back of the sequence)

These can be declared like this:

class Vector {
// ...
Vector(std::initializer_list<double>); // initialize with a list
// ...
void push_back(double); // add element at end increasing the size by one
// ...

};

The push_back() is particularly useful for input of arbitrary numbers of elements. For
example:

Vector read(istream& is)
{

Vector v;
for (double d; is>>d;) v.push_back(d);
retur n v;

}

The input loop is terminated by an end-of-file or a formatting error. Until that happens,
each number read is added to the Vector so that at the end, v’s size is the number of ele-
ments read. I used a for-statement rather than the more conventional while-statement to
keep the scope of d limited to the loop. The implementation of push_back() is discussed in
§13.6.4.3. The way to provide Vector with a move constructor, so that returning a
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Section 3.2.2 Initializing Containers 67

potentially huge amount of data from read() is cheap, is explained in §3.3.2.
The std::initializer_list used to define the initializer-list constructor is a standard library

type known to the compiler: When we use a { }-list, such as {1,2,3,4}, the compiler will cre-
ate an object of type initializer_list to give to the program. So, we can write:

Vector v1 = {1,2,3,4,5}; // v1 has 5 elements
Vector v2 = { 1.23, 3.45, 6.7, 8 }; // v2 has 4 elements

Vector’s initializer-list constructor might be defined like this:

Vector::Vector(std::initializer_list<double> lst) // initialize with a list
:elem{new double[lst.size()]}, sz{lst.size()}

{
copy(lst.beg in(),lst.end(),elem); // copy from lst into elem

}

3.2.3 Abstract Types [tour2.abstract]

Types such as complex and Vector are called concrete types because their representation is
part of their definition. In that, they resemble built-in types. In contrast, an abstract type
is a type that completely insulates a user from implementation details. To do that, we
must decouple the interface from the representation and give up genuine local variables.
Since we don’t know anything about the representation of an abstract type (not even its
size) we must allocate objects on the free store (§3.2.1.2, §11.2) and access them through
references or pointers (§2.2.5, §7.2, §7.7).

First, we define the interface of a class Container which we will design as a more
abstract version of our Vector:

class Container {
public:

vir tual double& operator[](int) = 0; // pure vir tual function
vir tual int size() const = 0; // const member function (§3.2.1.1)
vir tual ˜Container() {} // destr uctor (§3.2.1.2)

};

This class is a pure interface to specific containers defined later. The word vir tual means
‘‘may be redefined later in a class derived from this one.’’ A class derived from Container
provides an implementation for the Container interface. The curious =0 syntax says the
function is pure virtual; that is, some class derived from Container must define the func-
tion. Thus, it is not possible to define an object that is just a Container; a Container can
only serve as the interface to a class that implements its opera tor[]() and size() functions. A
class with a pure virtual function is called an abstract class.

This Container can be used like this:
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68 A Tour of C++: Abstraction Mechanisms Chapter 3

void use(Container& c)
{

const int sz = c.size();

for (int i=0; i<sz; ++i)
cout << c[i] << ’\n’;

}

Note how use() uses the Container interface in complete ignorance of implementation
details. It uses size() and [] without any idea of exactly which type provides their imple-
mentation. A class that provides the interface to a variety of other classes is often called a
polymorphic type (§20.3.2).

As is common for abstract classes, Container does not have a constructor. After all, it
does not have any data to initialize. On the other hand, Container does have a destructor
and that destructor is vir tual. Again, that is common for abstract classes because they tend
to be manipulated through references or pointers and someone destroying a Container
through a pointer has no idea what resources are owned by its implementation; see also
§3.2.5.

Not surprisingly, the implementation could consist of everything from the concrete
class Vector:

class Vector_container : public Container {// Vector_container implements Container
Vector v;

public:
Vector_container(int s) : v(s) { } // Vector of s elements
˜Vector_container() {}

double& operator[](int i) { retur n v[i]; }
int size() const { retur n v.size(); }

};

The ‘‘:public’’ can be read as ‘‘is derived from’’ or ‘‘is a subtype of.’’ Class Vector_con-
tainer is said to be derived from class Container, and class Container is said to be a base of
class Vector_container. An alternative terminology calls Vector_container and Container sub-
class and superclass, respectively. The derived class is said to inherit members from its
base class, so the use of base and derived classes is commonly referred to as inheritance.

The members opera tor[]() and size() are said to override the corresponding members in
the base class Container (§20.3.2). The destructor (˜Vector_container()) overrides the base
class destructor (˜Container()). Note that the member destructor (˜Vector()) is implicitly
invoked by its class’ destructor (˜Vector_container()).

For a function like use(Container&) to use a Container in complete ignorance of imple-
mentation details, some other function will have to make an object on which it can oper-
ate. For example:

The C++ Programming Language, 4th edition ©2012 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.
D R A F T



Section 3.2.3 Abstract Types 69

void g()
{

Vector_container vc(200);
// fill vc
use(vc);

}

Since use() doesn’t know about Vector_containers but only knows the Container interface, it
will work just as well for a different implementation of a Container. For example:

class List_container : public Container { // List_container implements Container
std::list<double> ld; // (standard librar y) list of doubles (§4.4.2)

public:
List_container() { } // empty List
List_container(initializer_list<double> il) : ld{il} { }
˜List_container() {}

double& operator[](int i);
int size() const { retur n ld.size(); }

};

double& List_container::operator[](int i)
{

for (auto& x : ld) {
if (i==0) retur n x;
−−i;

}
throw out_of_range("List container");

}

Here, the representation is a standard-library list<double>. Usually, I  would not implement
a container with a subscript operation using a list, because performance of list subscripting
is atrocious compared to vector subscripting. However, here I just wanted to show an
implementation that is radically different from the usual one.

A function can create a List_container and have use() use it:

void h()
{

List_container lc = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
use(lc);

}

The key point is that use(Container&) has no idea if its argument is a Vector_container, a
List_container, or some other kind of container; it doesn’t need to know. It can use any kind
of Container. It knows only the interface defined by Container. Consequently, use(Con-
tainer&) needn’t be recompiled if the implementation of List_container changes or a brand
new class derived from Container is used.

The flip side of this flexibility is that objects must be manipulated through pointers or
references (§3.3).
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3.2.4 Virtual Functions [tour2.virtual]

Consider again the use of Container:

void use(Container& c)
{

const int sz = c.size();

for (int i=0; i<sz; ++i)
cout << c[i] << ’\n’;

}

How is the call c[i] in use() resolved to the right opera tor[]()? When use() is called from h(),
List_container::opera tor[]() must be called. When use() is called from g(), Vector_con-
tainer::opera tor[]() must be called. To achieve this resolution, a Container object must con-
tain information to allow it to select the right function to call at run-time. The usual
implementation technique is for the compiler to convert the name of a vir tual function into
an index into a table of pointers to functions. That table is usually called the virtual func-
tion table or simply, the vtbl. Each class with virtual functions has its own vtbl identifying
its virtual functions. This can be represented graphically like this:

v
Vector_container::opera tor[]()

Vector_container::size()

Vector_container::˜Vector_container()

vtbl:Vector_container:

ld

List_container::opera tor[]()

List_container::size()

List_container::˜List_container()

vtbl:List_container:

The functions in the vtbl allow the object to be used correctly even when the size of the
object and the layout of its data are unknown to the caller. The implementation of the call-
er needs only to know the location of the pointer to the vtbl in a Container and the index
used for each virtual function. This virtual call mechanism can be made almost as effi-
cient as the ‘‘normal function call’’ mechanism (within 25%). Its space overhead is one
pointer in each object of a class with virtual functions plus one vtbl for each such class.

3.2.5 Class Hierarchies [tour2.hier]

The Container example is a very simple example of a class hierarchy. A class hierarchy is
a set of classes ordered in a lattice created by derivation (e.g. : public). We use class hier-
archies to represent concepts that have hierarchical relationships, such as ‘‘a fire engine is
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a kind of a truck which is a kind of a vehicle’’ and ‘‘a smiley face is a kind of a circle
which is a kind of a shape.’’ Huge hierarchies, with hundreds of classes, that are both
deep and wide are common. As a semi-realistic classic example, let’s consider shapes on
a screen:

Sha pe

Circle Tr iangle

Smiley

The arrows represent inheritance relationships. For example, class Circle is derived from
class Sha pe. To represent that simple diagram in code, we must first specify a class that
defines the general properties of all shapes:

class Shape {
public:

vir tual Point center() const =0; // pure vir tual
vir tual void move(Point to) =0;

vir tual void draw() const = 0; // draw on current "Canvas"
vir tual void rota te(int angle) = 0;

vir tual ˜Sha pe() {}
// ...

};

Naturally, this interface is an abstract class: as far as representation is concerned, nothing
(except the location of the pointer to the vtbl) is common for every Sha pe. Giv en this defi-
nition, we can write general functions manipulating vectors of pointers to shapes:

void rota te_all(vector<Sha pe∗>& v, int angle) // rotate v’s elements by angle degrees
{

for (auto p : v)
p−>rota te(angle);

}

To define a particular shape, we must say that it is a Sha pe and specify its particular prop-
erties (including its virtual functions):
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class Circle : public Shape {
pr ivate:

Point x; // center
int r; // radius

public:
Circle(Point p, int rr); // constr uctor

Point center() const { retur n x; }
void move(Point to) { x=to; }

void draw() const;
void rota te(int) {} // nice simple algorithm

};

So far, the Sha pe and Circle example provides nothing new compared to the Container and
Vector_container example, but we can build further:

class Smiley : public Circle {  // use the circle as base for a face
pr ivate:

vector<Sha pe∗> eyes; // usually two eyes
Sha pe∗ mouth;

public:
Smiley(Point p, int r) : Circle{p,r}, mouth{nullptr} { }
// ...
˜Smiley()
{

delete mouth;
for(auto p : eyes) delete p;

}

void move(Point to);

void draw() const;
void rota te(int);

void add_eye(Sha pe∗ s) { eyes.push_back(s); }
void set_mouth(Shape∗ s);
vir tual void wink(int i); // wink eye number i

};

The push_back() member function adds its argument to the vector (here, eyes), increasing
that vector’s size by one.

We can now define Smiley::draw() using calls to Smiley’s base and member draw()s:
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void Smiley::draw()
{

Circle::draw();
for (auto p : eyes) p−>draw();
mouth−>draw();

}

Note the way that Smiley keeps its eyes in a standard library vector and deletes them in its
destructor. Sha pe’s destructor is vir tual and Smiley’s destructor overrides it. A virtual de-
structor is essential for an abstract class because an object of a derived class may be
deleted through a pointer to a base class. Then, the virtual function call mechanism
ensures that the proper destructor is called. That destructor then implicitly invokes the
destructors of its bases and members.

In this simplified example, it is the programmer’s task to place the eyes and mouth
appropriately within the circle representing the face.

We can add data members, operations, or both as we define a new class by derivation.
This gives great flexibility with corresponding opportunities for confusion and poor
design. See Chapter 21. A class hierarchy offers two kinds of benefits:

• Interface inheritance: An object of a derived class can be used wherever an object
of a base class is required. That is, the base class acts as an interface for the derived
class. The Container and Sha pe classes are examples. Such classes are often
abstract classes.

• Implementation inheritance: A base class provides functions or data that simplifies
the implementation of derived classes. Smiley’s use of Circle’s constructor and of Cir-
cle::draw() are examples. Such base classes often have data members and construc-
tors.

Concrete classes – especially classes with small representations – are much like built-in
types: we define them as local variables, access them using their names, copy them
around, etc. Classes in class hierarchies are different: we tend to allocate them on the free
store using new and we access them through pointers or references. For example, consider
a function that reads data describing shapes from an input stream and constructs the appro-
priate Sha pe objects:

enum class Kind { circle, triangle, smiley };

Sha pe∗ read_sha pe(istream& is) // read shape descriptions from input stream is
{

// read shape header from is and find its Kind k

switch (k) {
case Kind::circle:

// read circle data {Point,int} into p and r
retur n new Circle{p,r};

case Kind::triangle:
// read triangle data {Point,Point,Point} into p1, p2, and p3
retur n new Triangle{p1,p2,p3};
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case Kind::smiley:
// read smiley data {Point,int,Sha pe,Sha pe,Sha pe} into p, r, e1 ,e2, and m
Smiley∗ ps = new Smiley{p,r};
ps−>add_eye(e1);
ps−>add_eye(e2);
ps−>set_mouth(m);
retur n ps;

}
}

A program may use that shape reader like this:

void user()
{

std::vector<Sha pe∗> v;
while (cin)

v.push_back(read_sha pe(cin));
draw_all(v); // call draw() for each element
rota te_all(v,45); // call rorate(45) for each element
for (auto p : v) delete p; // remember to delete elements

}

Obviously, the example is simplified – especially with respect to error handling – but it
vividly illustrates that user() has absolutely no idea of which kinds of shapes it manipu-
lates. The user() code can be compiled once and later used for new Sha pes added to the
program. Note that there are no pointers to the shapes outside user(), so user is responsible
for deallocating them. This is done with the delete operator and relies critically on
Sha pe’s virtual destructor. Because that destructor is virtual, delete invokes the destructor
for the most derived class. This is crucial because a derived class may have acquired all
kinds of resources (such as file handles, locks, and output streams) that need to be
released. In this case, a Smiley deletes its eyes and mouth objects.

Experienced programmers will notice that I left open two obvious opportunities for
mistakes:

• A user might fail to place the pointer returned by read_sha pe into a container and
also forget to delete it.

• The owner of the container of Sha pe pointers might forget to delete the objects
pointed to.

In that sense, functions returning a pointer to an object allocated on the free store are dan-
gerous. One solution to both problems is to return a standard-library unique_ptr (§5.2.1)
rather than a ‘‘naked pointer’’ and store unique_ptrs in the container:
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unique_ptr<Sha pe> read_sha pe(istream& is) // read shape descriptions from input stream is
{

// read shape header from is and find its Kind k

switch (k) {
case Kind::circle:

// read circle data {Point,int} into p and r
retur n unique_ptr<Sha pe>{new Circle{p,r}}; // §5.2.1

// ...
}

void user()
{

std::vector<unique_ptr<Sha pe>> v;
while (cin)

v.push_back(read_sha pe(cin));
draw_all(v); // call draw() for each element
rota te_all(v,45); // call rorate(45) for each element

} // all Shapes implicitly destroyed

Now the object is owned by the unique_ptr which will delete it when needed.
For the unique_ptr version of user() to work, we need versions of draw_all() and

rota te_all() that accept vector<unique_ptr<Sha pe>>s. Writing many such _all() functions
could become tedious, so §3.4.3 shows an alternative.

3.3 Copy and Move [tour2.copy]

By default, objects can be copied. This is true for objects of user-defined types as well as
for built-in types. The default meaning of copy is memberwise copy: copy each member.
For example, using complex from (§3.2.1.1):

complex z1 {1,2};
complex z2 {z1}; // copy initialization
complex z3;
z3 = z2; // copy assignment

Now z1, z2, and z3 each have the same value because both the assignment and the initial-
ization copied both members.

When we design a class, we must always consider if and how an object might be
copied. For simple concrete types, memberwise copy is often exactly the right semantics
for copy. For some sophisticated concrete types, such as Vector, memberwise copy is not
the right semantics for copy and for abstract types it almost never is.

3.3.1 Copying Containers [tour2.copy.container]

When a class is a resource handle; that is, it is responsible for an object accessed through
a pointer, the default memberwise copy is typically a disaster. Memberwise copy would
violate the resource handle’s inv ariant (§2.4.3.2). For example, the default copy would
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leave a copy of a Vector referring to the same elements as the original:

Vector v1(4);
Vector v2 = v1;
v1[0] = 2; // v2[0] is now also 2!
v2[1] = 3; // v1[1] is now also 3!

Graphically:

4
v1:

4
v2:

2 3

Fortunately, the fact that Vector has a destructor is a strong hint that the default (member-
wise) copy semantics is wrong and the compiler should at least warn against this example
(§17.6). We need to define a better copy semantics. Copying is defined by two functions:
a copy constructor and a copy assignment:

class Vector {
pr ivate:

// elem points to an array of sz doubles
double∗ elem;
int sz;

public:
Vector(int s); // constr uctor: esta blish invariant, acquire resources
˜Vector() { delete[] elem; } // destr uctor: release resources

Vector(const Vector& a); // copy constr uctor
Vector& operator=(const Vector& a); // copy assignment

double& operator[](int i);
const double& operator[](int i) const;

int size() const;
};

A suitable definition of Vector copy for a container simply copies the elements:

Vector::Vector(const Vector& a) // copy constr uctor
:sz(a.sz)

{
elem = new double[sz];
for (int i=0; i<sz; ++i)

elem[i] = a.elem[i];
}

The result of the v2=v1 example can now be presented as:
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4
v1:

4
v2:

32

Of course, we need a copy assignment in addition to the copy constructor:

Vector& Vector::opera tor=(const Vector& a) // copy assignment
{

double∗ p = new double[a.sz];
for (int i=0; i<a.sz; ++i)

p[i] = a.elem[i];
delete[] elem; // delete old elements
elem = p;
sz = a.sz;
retur n ∗this;

}

The name this is predefined in every member function and points to the object for which
the member function is called.

A copy constructor and a copy assignment for a class X are typically declared to take
an argument of type const X&.

3.3.2 Moving Containers [tour2.copy.move]

We can control copying by defining a copy constructor and a copy assignment, but copy-
ing can be costly for large containers. Consider:

Vector operator+(const Vector& a, const Vector& b)
{

if (a.size()!=b.size())
throw Vector_size_misma tch{};

Vector res(a.size());
for (int i=0; i<a.size(); ++i)

res[i]=a[i]+b[i];
retur n res;

}

Returning from a + involves copying the result out of the local variable res and into some
place where the caller can access it. We might use this + like this:
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void f(const Vector& x, const Vector& y, const Vector& z)
{

Vector r;
// ...
r = x+y+z;
// ...

}

That would be copying a Vector at least twice (one for each use of the + operator). If a
Vector is large, say 10000 doubles, that could be embarrassing. The most embarrassing
part is that res is never used again after the copy. We didn’t really want a copy, we just
wanted to get the result out of a function: we wanted to move a Vector rather than to copy
it. Fortunately, we can state that intent:

class Vector {
pr ivate:

// elem points to an array of sz doubles
double∗ elem;
int sz;

public:
// ...

Vector(const Vector& a); // copy constr uctor
Vector& operator=(const Vector& a); // copy assignment

Vector(Vector&& a); // move constr uctor
Vector& operator=(Vector&& a); // move assignment

// ...
};

Given that, the compiler will choose the move constructor to implement the transfer of the
return value out of the function. This means that the r=x+y+z will involve no copying of
Vectors. Instead, Vectors are just moved.

As is typical, Vector’s move constructor is trivial to define:

Vector::Vector(Vector&& a)
{

elem = a.elem; // "grab the elements" from a
sz = a.sz;
a.elem = nullptr; // now a has no elements
a.sz = 0;

}

The && means ‘‘rvalue reference’’ and is a reference to which we can bind an rvalue
(§6.4.1). The word ‘‘rvalue’’ is intended to complement ‘‘lvalue,’’ which roughly means
‘‘something that can appear on the left hand of an assignment.’’ So an rvalue is – to a first
approximation – a value that you can’t assign to, such as an integer returned by a function
call, and an rvalue reference is a reference to something that nobody else can assign to.
Note that a move constructor does not take a const argument: after all, a move constructor
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is supposed to remove the value from its argument. A move assignment is defined simi-
larly.

A move operation is applied when an rvalue reference is used as an initializer or as the
rght-hand side of an assignment.

After a move, an object should be in a state that allows a destructor to be run. Typi-
cally, we should also allow assignment to a moved-from object (§17.5, §17.6.2).

In cases where the programmer knows that a value will not be used again, but the com-
piler can’t be expected to be smart enough to figure that out, the programmer can be spe-
cific:

Vector f()
{

Vector x(1000);
Vector y(1000);
Vector z(1000);
// ...
z = x; // we get a copy
y = std::move(x); // we get a move
// ...
retur n z; // we get a move

};

The standard-library function move() returns an rvalue reference to its argument.
Just before the retur n we have:

nullptr 0
x:

1000
y:

1000
z:

1 2 ...1 2 ...

By the time z is destroyed, it too has been moved from (by the retur n) so that, like x, it
holds no elements.

3.3.3 Resource Management [tour2.copy.resource]

By defining constructors, copy operations, move operations, and a destructors, a program-
mer can provide complete control of the lifetime of a contained resource (such as the ele-
ments of a container). In particular, a move constructor allows an object to move simply
and cheaply from one scope to another. That way, we can move objects that we cannot or
would not want to copy out of a scope. Consider a standard-library thread representing a
concurrent activity (§5.3.1) and a Vector of a million doubles. We can’t copy the former
and don’t want to copy the latter.
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std::vector<thread> my_threads;

Vector init()
{

thread t {heartbea t}; // run hear tbeat concurrently (on its own thread)
my_threads .push_back(move(t)); // move t into my_threads

Vector<double> vec;
// ... fill vec ...
retur n vec; // move res out of run()

}

auto v = init(); // star t hear tbeat and initialize v

This makes resource handles, such as Vector and thread an alternative to using pointers in
many cases. In fact, the standard-library ‘‘smart pointers’’ such as unique_ptr, are them-
selves such resource handles (§5.2.1).

I used the standard-library vector because we don’t get to parameterize Vector with an
element type until §3.4.1.

3.3.4 Prev enting Copy and Move [tour2.copy.hier]

Using the default copy or move for a class in a hierarchy is typically a disaster: Given only
a pointer to a base, we simply don’t know what members the derived class has (§3.3.3), so
we can’t know how to copy them. So, the best thing to do is usually to delete the default
copy and move operations; that is, to eliminate to default definitions of those two opera-
tions:

class Shape {
public:

Sha pe(const Sha pe&) =delete; // no copy operations
Sha pe& opera tor=(const Sha pe&) =delete;

Sha pe(Sha pe&&) =delete; // no move operations
Sha pe& opera tor=(Shape&&) =delete;

˜Sha pe();
// ...

};

Now an attempt to copy a Sha pe will be caught by the compiler. If you need to copy an
object in a class hierarchy, write some kind of clone function (§22.2.4).

In case you forgot to delete a copy or move operation, no harm is done. A move opera-
tion is not implicitly generated for a class where the user has explicitly declared a de-
structor. Furthermore, the generation of copy operations are deprecated in this case
(§42.2.3). This can be a good reason to explicitly define a destructor even where the com-
piler would have implicitly provided one (§17.2.3).
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A base class in a class hierarchy is just one example of an object we wouldn’t want to
copy. A resource handle generally can’t be copied just by copying its members (§5.2,
§17.2.2).

3.4 Templates [tour2.generic]

Someone who wants a vector is unlikely always to want a vector of doubles. A vector is a
general concept, independent of the notion of a floating-point number. Consequently, the
element type of a vector ought to be represented independently. A template is a class or a
function that we parameterize with a set of types or values. We use templates to represent
concepts that are best understood as something very general from which we can generate
specific types and functions by specifying arguments, such as the element type double.

3.4.1 Parameterized Types [tour2.containers]

We can generalize our vector-of-doubles type to a vector-of-anything type by making it a
templa te and replacing the specific type double with a parameter. For example:

templa te<typename T>
class Vector {
pr ivate:

T∗ elem; // elem points to an array of sz elements of type T
int sz;

public:
Vector(int s); // constr uctor: esta blish invariant, acquire resources
˜Vector() { delete[] elem; } // destr uctor: release resources

// copy and move operations

T& operator[](int i);
const T& operator[](int i) const;
int size() const { retur n sz; }

};

The templa te<typename T> prefix makes T a parameter of the declaration it prefixes. It is
C++’s version of the mathematical ‘‘for all T’’ or more precisely ‘‘for all types T.’’

The member functions might be defined similarly:

templa te<typename T>
Vector<T>::Vector(int s)
{

if (s<0) throw Neg ative_size{};
elem = new T[s];
sz = s;

}
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templa te<typename T>
const T& Vector<T>::opera tor[](int i) const
{

if (i<0 || size()<=i) throw out_of_range{"Vector::opera tor[]"};
retur n elem[i];

}

Given these definitions, we can define Vectors like this:

Vector<char> vc(200); // vector of 200 character s
Vector<str ing> vs(17); // vector of 17 integers
Vector<list<int>> vli(45); // vector of 45 lists of integers

The >> in Vector<list>> terminates the nested template arguments; it is not a misplaced input
operator. It is not (as in C++98) necessary to place a space between the two >s.

We can use Vectors like this:

void f(const Vector<str ing>& vs) // Vector of some strings
{

for (int i = 0; i<vs.size(); ++i))
cout << vs[i] << ’\n’;

}

If we also want to use the range-for loop for our Vector, we must define suitable beg in() and
end():

templa te<typename T>
T∗ beg in(Vector<T>& x)
{

retur n &x[0]; // pointer to first element
}

templa te<typename T>
T∗ end(Vector<T>& x)
{

retur n x.beg in()+x.size(); // pointer to one-past-last element
}

Given those, we can write:

void f2(const Vector<str ing>& vs) // Vector of some strings
{

for (auto s : vs)
cout << s << ’\n’;

}

Similarly, we can define lists, vectors, maps (that is, associative arrays), etc., as templates
(§4.4, §23.2, Chapter 31).

Templates are a compile-time mechanism, so their use incurs no run-time overhead
compared to ‘‘hand-written code’’ (§23.2.2).
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3.4.2 Function Templates [tour2.algorithms]

Templates have many more uses than simply parameterizing a container with an element
type. In particular, they are extensively used for parameterization of both types and algo-
rithms in the standard library (§3.4.1, §3.4.2). For example, we can write a function that
calculates the sum of the element values of any container like this:

templa te<typename Container, typename Value>
Value sum(const Container& c, Value v)
{

for (auto x : c) v+=x;
retur n v;

}

The Value template argument and the function argument v are there to allow the caller to
specify the type and initial value of the accumulator (the variable in which to accumulate
the sum):

void user(Vector<int>& vi, std::list<double>& ld, std::vector<complex<double>>& vc)
{

int x = sum(vi,0); // the sum of a vector (add ints)
double d = sum(vi,0.0); // the sum of a vector (add doubles)
double dd = sum(ld,0.0); // the sum of a list of doubles
auto z = sum(vc,complex<double>{}); // the sum of a vector of complex<double>

}

The point of adding ints in a double would be to gracefully handle a number larger than the
largest int. Note how the types of the template arguments for sum<T,V> are deduced from
the function arguments.

This sum() is a simplified version of the standard-library accumula te() (§39.6).

3.4.3 Function Objects [tour2.functionobjects]

One particularly useful kind of template is the function object (sometimes called a func-
tor), which is used to define objects that can be called like functions. For example:

templa te<typename T>
class Less_than {

const T& val; // value to compare against
public:

Less_than(const T& v) :val(v) { }
bool operator()(const T& x) const { retur n x<val; } // call operator

};

The function called opera tor() implements the ‘‘function call,’’ ‘‘call,’’ or ‘‘application’’
operator ().

We can define named variables of type Less_than for some argument type:

Less_than<int> lti {42}; // will compare to 42 (using <)
Less_than<str ing> lts {"Backus"}; // will compare to "Backus" (using <)

We can call such an object, just as we call a function:
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void fct(int n, const string & s)
{

bool b1 = lti(n); // tr ue if n<42
bool b2 = lts(s); // tr ue if s<"Backus"
// ...

}

Such function objects are widely used as arguments to algorithms. For example, we can
count the occurrences of values for which a predicate returns tr ue:

templa te<typename C, typename P>
int count(const C& c, P pred)
{

int cnt = 0;
for (const auto& x : c)

if (pred(x)) ++cnt;
retur n cnt;

}

A predicate is something that we can invoke to return tr ue or false. For example:

void f(const Vector<int>& vec, const list<string>& lst, int x, const string& s)
{

cout << "number of values less than " << x
<< ": " << count(vec,Less_than<int>{x})
<< ’\n’;

cout << "number of values less than " << s
<< ": " << count(lst,Less_than<string>{s})
<< ’\n’;

}

Here, Less_than<int>{x} constructs an object for which the call operator compares to the int
called x; Less_than<str ing>{s} constructs an object that compares to the str ing called s. The
beauty of these function objects is that they carry the value to be compared against with
them. We don’t hav e to write a separate function for each value (and each type) and we
don’t hav e to introduce nasty global variables to hold values. Also, for a simple function
object like Less_than inlining is simple so that a call of Less_than is far more efficient than
an indirect function call. The ability to carry data plus their efficiency makes function
objects particularly useful as arguments to algorithms.

Function objects that is used to specify the meaning of key operations of a an general
algorithm (such as Less_than for count()) are often referred to a policy objects.

We hav e to define Less_than separately from its use. That could be seen as incon-
venient. Consequently, there is a notation for implicitly generating function objects:
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void f(const Vector<int>& vec, const list<string>& lst, int x, const string& s)
{

cout << "number of values less than " << x
<< ": " << count(vec,[&](int a){ retur n a<x; })
<< ’\n’;

cout << "number of values less than " << s
<< ": " << count(lst,[&](const string& a){ retur n a<s; })
<< ’\n’;

}

The notation [&](int a){ retur n a<x; } is called a lambda expression (§11.4). It generates a
function object exactly like Less_than<int>. The [&] is a capture list specifying that local
names used (such as x) will be passed by reference. Had we wanted to ‘‘capture’’ only x,
we could have said so: [&x]. Had we wanted to give the generated object a copy of x, we
could have said so: [=x]. Capture nothing is [], capture all local names used by references
is [&], and capture all local names used by value is [=].

Using lambdas can be convenient and terse, but also obscure. For non-trivial actions
(say, more than a simple expression), I prefer to name the operation so as to more clearly
state its purpose and to make it available for use in several places in a program.

In §3.2.5, we noticed the annoyance of having to write many functions to perform
operations on elements of vectors of pointers and unique_ptrs, such as draw_all() and
rota te_all(). Function objects (in particular, lambdas) can help by allowing us to separate
the traversal of the container from the specification of what is to be done with each ele-
ment.

First we need a function that applies an operation to each object pointed to by the ele-
ments of a container of pointers:

templa te<class C, class Oper>
void for_all(C& c, Oper op) // assume that C is a container of pointers
{

for (auto& x : c) op(∗x); // pass op() a reference to each element pointed to
}

Now we can write a version of user() from §3.2.5 without writing a set of _all functions:

void user()
{

vector<unique_ptr<Sha pe>> v;
while (cin)

v.push_back(read_sha pe(cin));
for_all(v,[](Sha pe& s){ s.draw(); }); // draw_all()
for_all(v,[](Sha pe& s){ s.rota te(45); }); // rotate_all(45)

}

I pass a reference to Sha pe to a lambda so that the lambdas don’t hav e to care exactly how
the objects are stored in the container. In particular, those for_all() calls would still work if
I changed v to a vector<Sha pe∗>.
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3.4.4 Variadic Templates [tour2.variadic]

A template can be defined to accept an arbitrary number of arguments of arbitrary types.
Such a template is called a variadic template. For example:

templa te<typename T, typename... Tail>
void f(T head, Tail... tail)
{

g(head); // do someting to head
f(tail...); // tr y again with tail

}

void f() { } // do nothing

The key to implementing a variadic template is to note that when you pass a list of argu-
ments to it, you can separate the first argument from the rest. Here, we do something to
the first argument (the head) and then recursively call f() with the rest of the arguments
(the tail). The ellipses, ..., is used to indicate ‘‘the rest’’ of a list. Eventually, of course, the
tail will become empty and we need a separate function to deal with that.

We can call this f() like this:

int main()
{

cout << "first: ";
f(1,2.2,"hello");

cout << "\nsecond: "
f(0.2,’c’,"yuck!",0,1,2);
cout << "\n";

}

This would call f(1,2.2,"hello"), which will call f(2.2,"hello"), which will call f("hello"), which
will call f(). What might g() do? Obviously, in a real program it will do whatever we
wanted done to each argument. For example, we could make it write its argument to out-
put:

templa te<typename T>
void g(T x)
{

cout << x << " ";
}

Given that, the output will be:

fir st: 1 2.2 hello
second: 0.2 c yuck! 0 1 2

It seems that f() is a simple variant of pr intf() printing arbitrary lists or values – imple-
mented in three lines of code plus their surrounding declarations.

The strength of variadic templates (sometimes just called variadics) is that they can
accept any arguments you care to give them. The weakness is that the type checking of
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the interface is a possibly elaborate template program. For details, see §28.6. For exam-
ples, see §34.2.4.2 (N-tuples) and Chapter 29 (N-dimensional matrices).

3.4.5 Aliases [tour2.alias]

Surprisingly often, it is useful to introduce a synonym for a type or a template (§6.5). For
example, the standard header <cstddef> contains a definition of the alias size_t, maybe:

using size_t = unsigned int;

The actual type named size_t is implementation dependent, so in another implementation
size_t may be an unsigned long. Having the alias size_t allows the programmer to write por-
table code.

It is very common for a parameterized type to provide an alias for types related to their
template arguments. For example:

templa te<typename T>
class Vector {
public:

using value_type = T;
// ...

};

In fact, every standard library container provides value_type as the name of their value type
(§31.3.1). This allows us to write code that will work for every container that follows this
convention. For example:

templa te<typename C>
using Element_type = typename C::value_type;

templa te<typename Container>
void algo(Container& c)
{

Vector<Element_type<Container>> vec; // keep results here
// ...

}

The aliasing mechanism can be used to define a new template by binding some or all tem-
plates arguments. For example:

templa te<typename Ke y, typename Value>
class Map {

// ...
};

templa te<typename Value>
using String_ma p = Map<str ing,Value>;

Str ing_ma p<int> m; // m is a Map<str ing,int>

See §23.6.
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3.5 Advice [tour2.advice]

[1] Express ideas directly in code; §3.2.
[2] Define classes to represent application concepts directly in code; §3.2.
[3] Use concrete classes for simple concepts and performance critical components;

§3.2.1.
[4] Avoid ‘‘naked’’ new and delete operations; §3.2.1.2.
[5] Use resource handles and RAII to manage resources; §3.2.1.2.
[6] Use abstract classes as interfaces when complete separation of interface and imple-

mentation is needed; §3.2.3.
[7] Use class hierarchies to represent concepts with an inherent hierarchical structure;

§3.2.5.
[8] When designing a class hierarchy, distinguish between implementation inheritance

and interface inheritance; §3.2.5.
[9] Control construction, copy, move, and destruction of objects; §3.3.
[10] Use containers, defined as resource handle templates, to hold collections of values

of the same type; §3.4.1.
[11] Use function templates to represent general algorithms; §3.4.2.
[12] Use function objects, including lambdas, to represent policies and actions; §3.4.3.
[13] Use type and template aliases to provide a uniform notation for types that may vary

among similar types or among implementations; §3.4.5.
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