
2
A Tour of C++: The Basics

The first thing we do, let´s
kill all the language lawyers.

– Henry VI, part II

• Introduction
• The Basics

Hello, World!; Types, Variables, and Arithmetic; Constants; Tests and Loops; Point-
ers, Arrays, and Loops

• User-defined Types
Structures; Classes; Enumerations

• Modularity
Separate Compilation; Namespaces; Error Handling

• Postscript
• Advice

2.1 Introduction [tour1.intro]

The aim of this chapter and the next three is to give you an idea of what C++ is, without
going into a lot of details. This chapter informally presents the notation of C++, C++’s
model of memory and computation, and the basic mechanisms for organizing code into a
program. These are the language facilities supporting the styles most often seen in C and
sometimes called procedural programming. Chapter 3 follows up by presenting C++’s
abstraction mechanisms. Chapter 4 and Chapter 5 give examples of standard-library facil-
ities.

The assumption is that you have programmed before. If not, please consider reading a
textbook, such as Programming: Principles and Practice using C++ [Stroustrup, 2009],

The C++ Programming Language, 4th edition ©2012 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.
D R A F T

40 A Tour of C++: The Basics Chapter 2

before continuing here. Even if you have programmed before, the language you used or
the applications you wrote may be very different from the style of C++ presented here. If
you find this ‘‘lightning tour’’ confusing, skip to the more systematic presentation starting
in Chapter 6.

This chapter and the next three save us from a strictly bottom-up presentation of lan-
guage and library facilities by enabling the use of a rich set of facilities even in early chap-
ters. For example, loops are not discussed in detail until Chapter 10, but they will be used
in obvious ways long before that. Similarly, the detailed description of classes, templates,
free-store use and the standard library are spread over many chapters, but standard-library
types, such as vv eeccttoorr, ssttrr iinngg, ccoommppllee xx, mmaapp, uunniiqquuee__ppooiinntteerr, and oossttrreeaamm, are used freely where
needed to improve code examples.

As an analogy, think of a short sightseeing tour of a city, such as Copenhagen or New
York. In just a few hours, you are given a quick peek at the major attractions, told a few
background stories, and usually given some suggestions about what to see next. You do
not know the city after such a tour. You do not understand all you have seen and heard.
To really know a city, you have to liv e in it, often for years. However, with a bit of luck,
you will have gained a bit of an overview, a notion of what might be special about the city,
and ideas of what might be of interest to you. After the tour, the real exploration can
begin.

2.2 The Basics [tour1.basics]

C++ is a compiled language. That means that for a program to run, its source text has to
be processed by a compiler, producing object files, which are combined by a linker yield-
ing an executable program. A C++ program typically consists of many source code files
(typically simply called ‘‘source files’’). An executable program is created for a specific
hardware/system combination; it is not portable, say, from a Mac to a Windows PC.
When we talk about portability of C++ programs, we usually mean portability of source
code; that is, the source code can be successfully compiled and run on a variety of sys-
tems.

The ISO C++ standard defines two kinds of entities:
• Core language features, such as built-in types (e.g., cchhaarr and iinntt) and loops (e.g., ff oorr-

statements and wwhhiillee-statements)
• Standard-library components, such as containers (e.g., vv eeccttoorr and mmaapp) and I/O

operations (e.g., <<<< and ggeettlliinnee(()))
The standard-library components are mostly perfectly ordinary C++ code that happens to
be provided by every C++ implementation. That is, the C++ standard library can be
implemented in C++ itself (and is with very minor uses of machine code for things such as
thread context switching). This implies that C++ is sufficiently expressive and efficient
for the most demanding systems programming tasks.

C++ is a statically typed language. That is, the type of every entity (e.g., object, value,
name, and expression) must be known to the compiler at its point of use. The type of an
object determines the set of operations applicable to it.

The C++ Programming Language, 4th edition ©2012 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.
D R A F T

Section 2.2.1 Hello, World! 41

2.2.1 Hello, World! [tour1.hello]

The minimal C++ program is

iinntt mmaaiinn(()) {{ }} //// the minimal C++ program

This defines a function called mmaaiinn, which takes no arguments and does nothing (§15.4).
Curly braces, {{ }}, express grouping in C++. Here, they indicate the start and end of the

function body. The double slash, ////, begins a comment that extends to the end of the line.
A comment is for the human reader; the compiler ignores comments.

Every C++ program must have exactly one global function named mmaaiinn(()). The program
starts by executing that function. The iinntt value returned by mmaaiinn(()), if any, is the program’s
return value to ‘‘the system.’’ If no value is returned, the system will receive a value indi-
cating successful completion. A nonzero value from mmaaiinn(()) indicates failure. Not ev ery
operating system and execution environment make use of that return value: Linux/Unix-
based environments often do, but Windows-based environments rarely do.

Typically, a program produces some output. Here is a program that writes HHeelllloo ,, WWoorrlldd!!:

##iinncclluuddee <<iioossttrreeaamm>>

iinntt mmaaiinn(())
{{

ssttdd::::ccoouutt <<<< ""HHeelllloo,, WWoorrlldd!!\\nn"";;
}}

The line ##iinncclluuddee <<iioossttrreeaamm>> instructs the compiler to include the declarations of the stan-
dard stream I/O facilities as found in iioossttrreeaamm. Without these declarations, the expression

ssttdd::::ccoouutt <<<< ""HHeelllloo,, WWoorrlldd!!\\nn""

would make no sense. The operator <<<< (‘‘put to’’) writes its second argument onto its first.
In this case, the string literal ""HHeelllloo ,, WWoorrlldd!!\\nn"" is written onto the standard output stream
ssttdd::::ccoouutt. A string literal is a sequence of characters surrounded by double quotes. In a
string literal, the backslash character \\ followed by another character denotes a single
‘‘special character.’’ In this case, \\nn is the newline character, so that the characters written
are HHeelllloo ,, WWoorrlldd!! followed by a newline.

The ssttdd:::: specifies that the name ccoouutt is to be found in the standard-library namespace
(§2.4.2, Chapter 14).

Essentially all executable code is placed in functions and called directly or indirectly
from mmaaiinn(()). For example:

##iinncclluuddee <<iioossttrreeaamm>>

ddoouubb llee ssqquuaarree((ddoouubbllee xx)) //// square a double precision floating-point number
{{

rreettuurr nn xx∗∗xx;;
}}

The C++ Programming Language, 4th edition ©2012 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.
D R A F T

42 A Tour of C++: The Basics Chapter 2

vv ooiidd pprriinntt__ssqquuaarree((ddoouubbllee xx))
{{

ssttdd::::ccoouutt <<<< ""tthhee ssqquuaarree ooff "" <<<< xx <<<< "" iiss "" <<<< ssqquuaarree((xx)) <<<< ’’\\nn’’;;
}}

iinntt mmaaiinn(())
{{

pprr iinntt__ssqquuaarree((11..223344));; //// pr int: the square of 1.234 is 1.52276
pprr iinntt__ssqquuaarree((55..555555));; //// pr int: the square of 5.555 is 30.858

}}

A ‘‘return type’’ vv ooiidd indicates that a function does not return a value.

2.2.2 Types, Variables, and Arithmetic [tour1.var]

Every name and every expression has a type that determines the operations that may be
performed on it. For example, the declaration

iinntt iinncchh;;

specifies that iinncchh is of type iinntt; that is, iinncchh is an integer variable.
A declaration is a statement that introduces a name into the program. It specifies a

type for the named entity:
• A type defines a set of possible values and a set of operations (for an object).
• An object is some memory that holds a value of some type.
• A value is a set of bits interpreted according to a type.
• A variable is a named object.

C++ offers a variety of fundamental types, which correspond directly to hardware facili-
ties. For example:

bbooooll //// Boolean, possible values are true and false
cchhaarr //// character, for example, ’a’, ’z’, and ’9’
iinntt //// integer, for example, 1, 42, and 1066
ddoouubb llee //// double-precision floating-point number, for example, 3.14 and 299793.0

Each of the fundamental types has a fixed size that determines the range of values that can
be stored in them (for integers) or the precision and range of those values (for floating
point numbers). A cchhaarr variable is of the natural size to hold a character on a given
machine (typically an 8-bit byte), and the sizes of other types are quoted in multiples of
the size of a cchhaarr. The size of a type is implementation defined (i.e., it can vary among dif-
ferent machines) and can be obtained by the ssiizz eeooff operator; for example ssiizz eeooff((cchhaarr)) equals
11 and ssiizz eeooff((iinntt)) is often 44. We can represent sizes graphically:

The C++ Programming Language, 4th edition ©2012 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.
D R A F T

Section 2.2.2 Types, Variables, and Arithmetic 43

bbooooll:

cchhaarr:

iinntt:

ddoouubb llee:

The arithmetic operators can be used for appropriate combinations of these types:

xx++yy //// plus
++xx //// unar y plus
xx−−yy //// minus
−−xx //// unar y minus
xx∗∗yy //// multiply
xx//yy //// divide
xx%%yy //// remainder (modulus) for integers

So can the comparison operators:

xx====yy //// equal
xx!!==yy //// not equal
xx<<yy //// less than
xx>>yy //// greater than
xx<<==yy //// less than or equal
xx>>==yy //// greater than or equal

In assignments and in arithmetic operations, C++ performs all meaningful conversions
(§10.5.3) between the basic types so that they can be mixed freely:

vv ooiidd ssoommee__ffuunnccttiioonn(()) //// function that doesn’t return a value
{{

ddoouubb llee dd == 22..22;; //// initialize floating-point number
iinntt ii == 77;; //// initialize integer
dd == dd++ii;; //// assign sum to d
ii == dd∗∗ii;; //// assign product to i (truncating the double to an int)

}}

Note that == is the assignment operator and ==== tests equality.
C++ offers a variety of notations for expressing initialization, such as the == used above,

and a universal form based on curly brace delimited initializer lists:

ddoouubb llee dd11 == 22..33;;
ddoouubb llee dd22 {{22..33}};;

The C++ Programming Language, 4th edition ©2012 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.
D R A F T

44 A Tour of C++: The Basics Chapter 2

ccoommppllee xx<<ddoouubbllee>> zz == 11;; //// a complex number with double-precision floating-point scalars
ccoommppllee xx<<ddoouubbllee>> zz22 {{dd11,,dd22}};;
ccoommppllee xx<<ddoouubbllee>> zz33 == {{11,,22}};; //// the = is optional with { ... }

vv eeccttoorr<<iinntt>> vv {{11,,22,,33,,44,,55,,66}};; //// a vector of ints

The == form is traditional and dates back to C, but if in doubt, use the general {{}}-list form
(§6.3.5.2). If nothing else, it saves you from conversions that lose information (narrowing
conversions; §10.5):

iinntt ii11 == 77..22;; //// i1 becomes 7
iinntt ii22 {{77..22}};; //// error : floating-point to integer conversion

A constant (§2.2.3) cannot be left uninitialized and a variable should only be left uninitial-
ized in extremely rare circumstances. Don’t introduce a name until you have a suitable
value for it. User-defined types (such as, ssttrr iinngg, vv eeccttoorr, MMaattrr iixx, and OOrrcc) can be defined to be
implicitly initialized (§3.2.1.1).

When defining a variable, you don’t actually need to state its type explicitly when it
can be deduced from the initializer:

aauuttoo bb == ttrruuee;; //// a bool
aauuttoo cchh == ’’xx’’;; //// a char
aauuttoo ii == 112233;; //// an int
aauuttoo dd == 11..22;; //// a double
aauuttoo zz == ssqqrrtt((yy));; //// z has the type of whatever sqr t(y) retur ns

With aauuttoo, we use the == syntax because there is no type conversion involved that might
cause problems (§6.3.6.2).

We use aauuttoo where we don’t hav e a specific reason to mention the type explicitly.
‘‘Specific reasons’’ include

• The definition is in a large scope where we want to make the type clearly visible to
readers of our code

• We want to be explicit about a variable’s range or precision (e.g., lloonngg ddoouubb llee rather
than ddoouubb llee).

Using aauuttoo, we avoid redundancy and typing long type names. This is especially impor-
tant in generic programming where the exact type of an object can be hard for the pro-
grammer to know and the type names can be quite long (§4.5.1).

In addition to the conventional arithmetic and logical operators (§10.3), C++ offers
more specific operations for modifying a variable:

xx++==yy //// x = x+y
++++xx //// increment: x = x+1
xx−−==yy //// x = x-y
−−−−xx //// decrement: x = x-1
xx∗∗==yy //// scaling: x = x*y
xx//==yy //// scaling: x = x/y
xx%%==yy //// x = x%y

These operators are concise, convenient, and very frequently used.

The C++ Programming Language, 4th edition ©2012 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.
D R A F T

Section 2.2.3 Constants 45

2.2.3 Constants [tour1.const]

C++ supports two notions of immutability (§7.5):
• ccoonnsstt: meaning roughly ‘‘I promise not to change this value’’ (§7.5). This is used

primarily to specify interfaces, so that data can be passed to functions without fear
of it being modified. The compiler enforces the promise made by ccoonnsstt.

• ccoonnssttee xxpprr: meaning roughly ‘‘to be evaluated at compile time’’ (§10.4). This is used
primarily to specify constants, to allow placement of data in memory where it is
unlikely to be corrupted, and for performance.

For example:

ddoouubb llee ssuumm((ccoonnsstt vveeccttoorr<<ddoouubbllee>>&&));; //// sum will not modify its argument
ccoonnsstt iinntt ddmmvv == 1177;; //// dmv is a named constant
ccoonnssttee xxpprr ddoouubbllee mmaaxx11 == 11..44∗∗ssqquuaarree((ddmmvv));; //// OK if square(17) is a constant expression
ccoonnsstt ddoouubbllee mmaaxx22 == 11..44∗∗ssqquuaarree((ddmmvv));; //// OK, may be evaluated at run time
vv eeccttoorr<<ddoouubbllee>> vv {{ 11..22,, 33..44,, 44..55 }};; //// v is not a constant
ccoonnsstt ddoouubbllee ss11 == ssuumm((vv));; //// OK: evaluated at run time
ccoonnssttee xxpprr ddoouubbllee ss22 == ssuumm((vv));; //// error : sum(v) not constant expression

For a function to be useful in a constant expression, that is, in an expression that will be
evaluated by the compiler, it must be defined ccoonnssttee xxpprr. For example,

ccoonnssttee xxpprr ddoouubbllee ssqquuaarree((ddoouubbllee xx)) {{ rreettuurrnn xx∗∗xx;; }}

To be ccoonnssttee xxpprr a function must be rather simple: just a return statement computing a
value. A ccoonnssttee xxpprr function can be used for non-constant arguments, but when that is done
the result is not a constant expression. We allow a ccoonnssttee xxpprr function to be called with
non-constant-expression arguments in contexts that do not require constant expressions, so
that we don’t hav e to define essentially the same function twice: once for constant expres-
sions and once for variables.

In a few places, constant expressions are required by language rules (e.g., array bounds
(§2.2.5, §7.3), case labels (§2.2.4, §9.4.2), and some template arguments (§25.2). In other
cases, compile-time evaluation is important for performance. Independently of perfor-
mance issues, the notion of immutability (of an object with an unchangeable state) is an
important design concern (§10.4).

2.2.4 Tests and Loops [tour1.loop]

C++ provides a conventional set of statements for expressing selection and looping. For
example, here is a simple function that prompts the user and returns a Boolean indicating
the response:

bbooooll aacccceepptt(())
{{

ccoouutt <<<< ""DDoo yyoouu wwaanntt ttoo pprroocceeeedd ((yy oorr nn))??\\nn"";; //// wr ite question

cchhaarr aannsswweerr == 00;;
cciinn >>>> aannsswweerr;; //// read answer

The C++ Programming Language, 4th edition ©2012 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.
D R A F T

46 A Tour of C++: The Basics Chapter 2

iiff ((aannsswweerr ==== ’’yy’’)) rreettuurrnn ttrruuee;;
rreettuurr nn ffaallssee;;

}}

To match the <<<< output operator (‘‘put to’’), the >>>> operator (‘‘get from’’) is used for input;
cciinn is the standard input stream. The type of the right-hand operand of >>>> determines what
input is accepted and its right-hand operand is the target of the input operation. The \\nn
character at the end of the output string represents a newline (§2.2.1).

The example could be slightly improved by taking an nn (for ‘‘no’’) answer into
account:

bbooooll aacccceepptt22(())
{{

ccoouutt <<<< ""DDoo yyoouu wwaanntt ttoo pprroocceeeedd ((yy oorr nn))??\\nn"";; //// wr ite question

cchhaarr aannsswweerr == 00;;
cciinn >>>> aannsswweerr;; //// read answer

ss wwiittcchh ((aannsswweerr)) {{
ccaassee ’’yy’’::

rreettuurr nn ttrruuee;;
ccaassee ’’nn’’::

rreettuurr nn ffaallssee;;
ddeeff aauulltt::

ccoouutt <<<< ""II’’llll ttaakkee tthhaatt ffoorr aa nnoo..\\nn"";;
rreettuurr nn ffaallssee;;

}}
}}

A ss wwiittcchh-statement tests a value against a set of constants. The case constants must be dis-
tinct, and if the value tested does not match any of them, the ddeeff aauulltt is chosen. The pro-
grammer need not provide a ddeeff aauulltt. If there is no ddeeff aauulltt, no action is taken if the value
doesn’t match any case constant.

Few programs are written without loops. In this case, we might like to giv e the user a
few tries:

bbooooll aacccceepptt33(())
{{

iinntt ttrr iieess == 11;;
wwhhiillee ((ttrriieess<<44)) {{

ccoouutt <<<< ""DDoo yyoouu wwaanntt ttoo pprroocceeeedd ((yy oorr nn))??\\nn"";; //// wr ite question
cchhaarr aannsswweerr == 00;;
cciinn >>>> aannsswweerr;; //// read answer

The C++ Programming Language, 4th edition ©2012 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.
D R A F T

Section 2.2.4 Tests and Loops 47

ss wwiittcchh ((aannsswweerr)) {{
ccaassee ’’yy’’::

rreettuurr nn ttrruuee;;
ccaassee ’’nn’’::

rreettuurr nn ffaallssee;;
ddeeff aauulltt::

ccoouutt <<<< ""SSoorrrryy,, II ddoonn’’tt uunnddeerrssttaanndd tthhaatt..\\nn"";;
++++ttrr iieess;; //// increment

}}
}}
ccoouutt <<<< ""II’’llll ttaakkee tthhaatt ffoorr aa nnoo..\\nn"";;
rreettuurr nn ffaallssee;;

}}

The wwhhiillee-statement executes until its condition becomes ff aallssee.

2.2.5 Pointers, Arrays and Loops [tour1.ptr]

An array of elements of type cchhaarr can be declared like this:

cchhaarr vv[[66]];; //// array of 6 characters

Similarly, a pointer can be declared like this:

cchhaarr∗∗ pp;; //// pointer to character

In declarations, [[]] means ‘‘array of’’ and ∗∗ means ‘‘pointer to.’’ All arrays have 00 as their
lower bound, so vv has six elements, vv[[00]] to vv[[55]]. The size of an array must be a constant
expression (§2.2.3). A pointer variable can hold the address of an object of the appropri-
ate type:

cchhaarr∗∗ pp == &&vv[[33]];; //// p points to v’s four th element
iinntt xx == ∗∗pp;; //// read the value of what p points to

In an expression, prefix unary ∗∗ means ‘‘contents of’’ and prefix unary && means ‘‘address
of.’’ We can represent the result of that initialized definition graphically:

pp:

vv:
0: 1: 2: 3: 4: 5:

Consider copying ten elements from one array to another:

vv ooiidd ccooppyy__ffcctt(())
{{

iinntt vv11[[1100]];;
iinntt vv22[[1100]] == {{00,,11,,22,,33,,44,,55,,66,,77,,88,,99}};;

The C++ Programming Language, 4th edition ©2012 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.
D R A F T

48 A Tour of C++: The Basics Chapter 2

ff oorr ((aauuttoo ii==00;; ii<<1100;; ++++ii))
vv11[[ii]]==vv22[[ii]];;

//// ...
}}

This ff oorr-statement can be read as ‘‘set ii to zero; while ii is less than 1100, copy the iith element
and increment ii.’’ When applied to an integer variable, the increment operator ++++ simply
adds 11. C++ also offers a simpler ff oorr-statement, called a range-ff oorr-statement, for loops that
traverse a sequence in the simplest way:

vv ooiidd pprriinntt(())
{{

iinntt vv[[]] == {{00,,11,,22,,33,,44,,55,,66,,77,,88,,99}};;

ff oorr ((aauuttoo xx :: vv)) //// for each x in v
ccoouutt <<<< xx <<<< ’’\\nn’’;;

ff oorr ((aauuttoo xx :: {{1100,,2211,,3322,,4433,,5544,,6655}}))
ccoouutt <<<< xx <<<< ’’\\nn’’;;

//// ...
}}

This range-ff oorr-statement can be read as ‘‘for every element of vv, from the first to the last,
place a copy in xx and print it.’’ Note that we don’t hav e to specify an array bound when
we initialize it with a list. The range-ff oorr-statement can be used for any sequence of ele-
ments (§3.4.1).

If we didn’t want to copy the values from vv into the variable xx, but rather just have xx
refer to an element, we could write:

vv ooiidd iinnccrreemmeenntt(())
{{

iinntt vv[[]] == {{00,,11,,22,,33,,44,,55,,66,,77,,88,,99}};;

ff oorr ((aauuttoo&& xx :: vv))
++++xx;;

//// ...
}}

In a declaration, the unary suffix && means ‘‘reference to.’’ A reference is similar to a
pointer, except that you don’t need to use a prefix ∗∗ to get to the value referred to by the
reference. When used in declarations, operators (such as ∗∗ and [[]]) are called declarator
operators:

TT aa[[nn]];; //// T[n]: array of n Ts (§7.3)
TT∗∗ pp;; //// T*: pointer to T (§7.2)
TT&& rr;; //// T&: reference to T (§7.7)
TT ff((AA));; //// T(A): function taking an argument of type A returning a result of type T (§2.2.1)

We try to ensure that a pointer always points to an object, so that dereferencing it is valid.
When we don’t hav e an object to point to or if we need to represent the notion of ‘‘no
object available’’ (e.g. for an end of a list), we give the pointer the value nn uullllppttrr (‘‘the null

The C++ Programming Language, 4th edition ©2012 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.
D R A F T

Section 2.2.5 Pointers, Arrays and Loops 49

pointer’’). There is only one nn uullllppttrr shared by all pointer types:

ddoouubb llee∗∗ ppdd == nnuullllppttrr;;
LLiinnkk<<RReeccoorrdd>>∗∗ llsstt == nnuullllppttrr;;

It is often wise to check whether a pointer argument actually points to something:

iinntt ccoouunntt__xx((cchhaarr∗∗ pp ,, cchhaarr xx)) //// count the number of occurrences of x in p[]
//// p is assumed to point to a zero-ter minated array of char (or to nothing)

{{
iiff ((pp====nnuullllppttrr)) rreettuurrnn 00;;

iinntt ccoouunntt == 00;;
ff oorr ((;; ∗∗pp!!==00;; ++++pp))

iiff ((∗∗pp====xx))
++++ccoouunntt;;

rreettuurr nn ccoouunntt;;
}}

Note how we can move a pointer to point to the next element of an array using ++++ and that
we can leave out the initializer in a ff oorr-statement if we don’t need it.

The definition of ccoouunntt__xx(()) assumes that the cchhaarr∗∗ is a C-style string; that is, that the
pointer points to a zero-terminated array of cchhaarr.

In older code, 00 or NNUULLLL is typically used instead of nn uullllppttrr (§7.2.2). However, using
nn uullllppttrr eliminates potential confusion between integers (such as 00 or NNUULLLL) and pointers,
(such as nn uullllppttrr).

2.3 User-defined Types [tour1.udt]

We call the types that can be built out of the fundamental types (§2.2.2), the ccoonnsstt modifier
(§2.2.3), and the declarator operators (§2.2.5) built-in types. C++’s set of built-in types
and operations is rich, but deliberately low-level. They directly and efficiently reflect the
capabilities of conventional computer hardware. However, they don’t provide the pro-
grammer with high-level facilities to conveniently write advanced applications. Instead,
C++ augments the built-in types and operations with a sophisticated set of abstraction
mechanisms out of which programmers can build such high-level facilities. The C++
abstraction mechanisms are primarily designed to let programmers design and implement
their own types, with suitable representations and operations, and for programmers to sim-
ply and elegantly use such types. Types built out of the built-in types using C++’s abstrac-
tion mechanisms are called user-defined types. They are referred to as classes and enu-
merations. Most of this book is devoted to the design, implementation, and use of user-
defined types. The rest of this chapter presents the simplest and most fundamental facili-
ties for that. Chapter 3 is a more complete description of the abstraction mechanisms and
the programming styles they support. Chapter 4 and Chapter 5 present an overview of the
standard library, and since the standard library mainly consists of user-defined types, they
provide examples of what can be built using the language facilities and programming tech-
niques presented in Chapter 2 and Chapter 3.

The C++ Programming Language, 4th edition ©2012 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.
D R A F T

50 A Tour of C++: The Basics Chapter 2

2.3.1 Structures [tour1.struct]

The first step in building a new type is often to organize the elements it needs into a data
structure, a ssttrr uucctt:

ssttrr uucctt VVeeccttoorr {{
iinntt sszz;; //// number of elements
ddoouubb llee∗∗ eelleemm;; //// pointer to elements

}};;

This VV eeccttoorr consists of an iinntt and a ddoouubb llee∗∗. A variable of type VV eeccttoorr can be defined like
this:

VV eeccttoorr vv;;

However, by itself that is not of much use because the eelleemm pointer doesn’t point to any
elements. To be useful, we must give vv some elements to point to. For example, we can
construct a VV eeccttoorr like this:

vv ooiidd vveeccttoorr__iinniitt((VVeeccttoorr&& vv,, iinntt ss))
{{

vv ..eelleemm == nneeww ddoouubbllee[[ss]];; //// allocate an array of s doubles
vv ..sszz == ss;;

}}

That is, vv’s eelleemm member gets a pointer produced by the nnee ww operator and vv’s ssiizz ee member
gets the number of elements. The && in VV eeccttoorr&& indicates that we pass vv by non-ccoonnsstt refer-
ence; that way, vv eeccttoorr__iinniitt(()) can modify the vector passed to it.

The nnee ww operator allocates memory from an area called ‘‘the free store’’ (also known
as ‘‘dynamic memory’’ and ‘‘heap’’; §11.2).

A simple use of VV eeccttoorr looks like this:

ddoouubb llee rreeaadd__aanndd__ssuumm((iinntt ss))
{{

VV eeccttoorr vv;;
vv eeccttoorr__iinniitt((vv,,ss));; //// allocate s elements for v
ff oorr ((iinntt ii==00;; ii<<ss;; ++++ii))

cciinn>>>>vv ..eelleemm[[ii]];; //// read into elements

ddoouubb llee ssuumm == 00;;
ff oorr ((iinntt ii==00;; ii<<ss;; ++++ii))

ssuumm++==vv ..eelleemm[[ii]];; //// take the sum of the elements
rreettuurr nn ssuumm;;

}}

There is a long way to go before our VV eeccttoorr is as elegant and flexible as the standard-
library vv eeccttoorr. In particular, a user of VV eeccttoorr has to know every detail of VV eeccttoorr’’ss representa-
tion. The rest of this chapter and the next gradually improve VV eeccttoorr as an example of lan-
guage features and techniques, Chapter 4 presents the standard-library vv eeccttoorr, which con-
tains all the nice improvements and more, and Chapter 31 presents the complete vv eeccttoorr in
the context of other standard-library facilities.

The C++ Programming Language, 4th edition ©2012 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.
D R A F T

Section 2.3.1 Structures 51

I use vv eeccttoorr and other standard-library components as examples
• to illustrate language features and design techniques
• to help you learn and use the standard-library components.

Don’t re-invent standard-library components, such as vv eeccttoorr and ssttrr iinngg, use them.
We use .. (dot) to access ssttrr uucctt members through a name (and through a reference) and

−−>> to access ssttrr uucctt members through a pointer. For example:

vv ooiidd ff((VVeeccttoorr vv,, VVeeccttoorr&& rrvv,, VVeeccttoorr∗∗ ppvv))
{{

iinntt ii11 == vv..sszz;;
iinntt ii22 == rrvv..sszz;;
iinntt ii33 == ((∗∗ppvv))..sszz;; //// * means ‘‘contents of’’ (§2.2.5)
iinntt ii44 == ppvv−−>>sszz;;
iinntt ii55 == ((&&vv))−−>>sszz;; //// & means ‘‘address of’’ (§2.2.5)

}}

2.3.2 Classes [tour1.class]

Having the data specified separately from the operations on it has advantages, such as the
ability to use the data in arbitrary ways. However, a tighter connection between the repre-
sentation and the operations is needed for a user-defined type to have all the properties
expected of a ‘‘real type.’’ In particular, we often want to keep the representation inacces-
sible to users, so as to ease use, guarantee consistent use of the data, and allow us to later
improve the representation. To do that we have to distinguish between the interface to a
type (to be used by all) and its implementation (which has access to the otherwise inacces-
sible data). The language mechanism for that is called a class. A class is defined to have
a set of members, which can be data, function, or type members. The interface is defined
by the ppuubb lliicc members of a class and pprr iivvaattee members are accessible only through that
interface. For example:

ccllaassss VVeeccttoorr {{
ppuubb lliicc::

VV eeccttoorr((iinntt ss)) ::eelleemm{{nneeww ddoouubbllee[[ss]]}},, sszz{{ss}} {{ }} //// constr uct a Vector
ddoouubb llee&& ooppeerraattoorr[[]]((iinntt ii)) {{ rreettuurrnn eelleemm[[ii]];; }} //// element access: subscripting
iinntt ssiizzee(()) {{ rreettuurrnn sszz;; }}

pprr iivvaattee::
ddoouubb llee∗∗ eelleemm;; //// pointer to the elements
iinntt sszz;; //// the number of elements

}};;

Given that, we can define a variable of our new type VV eeccttoorr:

VV eeccttoorr vv((66));; //// a Vector with six elements

We can illustrate a VV eeccttoorr object graphically:

The C++ Programming Language, 4th edition ©2012 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.
D R A F T

52 A Tour of C++: The Basics Chapter 2

6

VV eeccttoorr:
eelleemm:

sszz:
0: 1: 2: 3: 4: 5:

Basically, the VV eeccttoorr object is a ‘‘handle’’ containing a pointer to the elements (eelleemm)) plus
the number of elements (sszz). The number of elements (6 in the example) can vary from
VV eeccttoorr object to VV eeccttoorr object, and a VV eeccttoorr object can have a different number of elements
at different times. However, the VV eeccttoorr object itself is always the same size. This is the
basic technique for handling varying amounts of information in C++: a fixed-sized handle
referring to a variable amount of data ‘‘elsewhere’’ (e.g., on the free store allocated by
nnee ww; §11.2). How to design and use such objects is the main topic of Chapter 3.

Here, the representation of a VV eeccttoorr (the members eelleemm and sszz) is accessible only
through the interface provided by the ppuubb lliicc members: VV eeccttoorr(()), ooppeerr aattoorr[[]](()), and ssiizz ee(()). For
example:

ddoouubb llee rreeaadd__aanndd__ssuumm((iinntt ss))
{{

VV eeccttoorr vv((ss));; //// make a vector of s elements
ff oorr ((iinntt ii==00;; ii<<vv..ssiizzee(());; ++++ii)) cciinn>>>>vv[[ii]];; //// read into elements

ddoouubb llee ssuumm == 00;;
ff oorr ((iinntt ii==00;; ii<<vv..ssiizzee(());; ++++ii)) ssuumm++==vv[[ii]];; //// take the sum of the elements
rreettuurr nn ssuumm;;

}}

A ‘‘function’’ with the same name as its class is called a constructor; that is, a function
used to construct objects of a class. So, the constructor, VV eeccttoorr(()), replaces vv eeccttoorr__iinniitt(()) from
§2.3.1. Unlike an ordinary function, a constructor is guaranteed to be used to initialize
objects of its class. Thus, defining a constructor eliminates the problem of uninitialized
variables for a class.

VV eeccttoorr((iinntt)) defines how objects of type VV eeccttoorr are constructed. In particular, it states that
it needs an integer to do that. That integer is used as the number of elements. The con-
structor initializes the VV eeccttoorr members using a member initializer list:

::eelleemm{{nnee ww ddoouubbllee[[ss]]}},, sszz{{ss}}

That is, we first initialize eelleemm with a pointer to ss elements of type ddoouubb llee obtained from
the free store. Then, we initialize sszz to ss.

Access to elements are provided by a subscript function, called ooppeerr aattoorr[[]]. It returns a
reference to the appropriate element.

The ssiizz ee(()) function is supplied to give users the number of elements.
Obviously, error handling is completely missing, but we’ll return to that in §2.4.3.

Similarly, we did not provide a mechanism to ‘‘give back’’ the array of ddoouubb llees acquired
by nnee ww; §3.2.1.2 shows how to use a destructor to elegantly do that.

The C++ Programming Language, 4th edition ©2012 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.
D R A F T

Section 2.3.3 Enumerations 53

2.3.3 Enumerations [tour1.enum]

In addition to classes, C++ supports a simple form of user-defined type for which we can
enumerate the values:

eenn uumm ccllaassss CCoolloorr {{ rreedd,, bblluuee,, ggrreeeenn }};;
eenn uumm ccllaassss TTrraafffificc__lliigghhtt {{ ggrreeeenn,, yyeellllooww,, rreedd }};;

CCoolloorr ccooll == CCoolloorr::::rreedd;;
TT rraafffificc__lliigghhtt lliigghhtt == TTrraafffificc__lliigghhtt::::rreedd;;

Note that enumerators (e.g., rreedd) are in the scope of their eenn uumm ccllaassss, so that they can be
used repeatedly in different eenn uumm ccllaasssses without confusion. For example, CCoolloorr ::::rreedd is
CCoolloorr’s rreedd which is different from TT rraafffificc__lliigghhtt::::rreedd.

Enumerations are used to represent small sets of integer values. They are used to make
code more readable and less error-prone than it would have been had the symbolic (and
mnemonic) enumerator names not been used.

An enumeration is a user-defined type so we can define operators for it:

TT rraafffificc__lliigghhtt&& ooppeerraattoorr++++((TTrraafffificc__lliigghhtt&& tt)) //// prefix increment: ++
{{

ss wwiittcchh ((tt)) {{
ccaassee TTrraafffificc__lliigghhtt::::ggrreeeenn:: rreettuurrnn tt==TTrraafffificc__lliigghhtt::::yyeellllooww;;
ccaassee TTrraafffificc__lliigghhtt::::yyeellllooww:: rreettuurrnn tt==TTrraafffificc__lliigghhtt::::rreedd;;
ccaassee TTrraafffificc__lliigghhtt::::rreedd:: rreettuurrnn tt==TTrraafffificc__lliigghhtt::::ggrreeeenn;;
}}

}}

TT rraafffificc__lliigghhtt nneexxtt == ++++lliigghhtt;; //// next becomes Traffic_light::green

By default, an eenn uumm ccllaassss has only assignment, initialization, and comparisons (e.g., ====
and <<; §2.2.2) defined. The ccllaassss after the eenn uumm specifies that an enumeration is strongly
typed and that its enumerators are scoped. Being separate types, eenn uumm ccllaasssses help prevent
accidental misuses of constants. In particular, we cannot mix TT rraafffificc__lliigghhtt and CCoolloorr values:

CCoolloorr xx == rreedd;; //// error : which red?
CCoolloorr yy == TTrraafffificc__lliigghhtt::::rreedd;; //// error : that red is not a Color
CCoolloorr zz == CCoolloorr::::rreedd;; //// OK

Similarly, we cannot implicitly mix CCoolloorr and integer values:

iinntt ii == CCoolloorr::::rreedd;; //// error : Color ::red is not an int
CCoolloorr cc == 22;; //// error : 2 is not a Color

If you don’t want to explicitly qualify enumerator names and want enumerator values to
be iinntts (without the need for an explicit conversion), you can remove the ccllaassss from eenn uumm
ccllaassss to get a ‘‘plain eenn uumm’’ (§8.4.2).

The C++ Programming Language, 4th edition ©2012 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.
D R A F T

54 A Tour of C++: The Basics Chapter 2

2.4 Modularity [tour1.module]

A C++ program consists of many separately-developed parts, such as functions (§2.2.1,
Chapter 12), user-defined types (§2.3, §3.2, Chapter 16), class hierarchies (§3.2.5, Chapter
20), and templates (§3.4, Chapter 23). The key to managing this is to clearly define the
interactions among those parts. The first and most important distinction is between the
interface to a part and its implementation. At the language level, C++ represents inter-
faces by declarations. A declaration specifies all that’s needed to use a function or a type.
For example:

ddoouubb llee ssqqrrtt((ddoouubbllee));; //// the square root function takes a double and returns a double

ccllaassss VVeeccttoorr {{
ppuubb lliicc::

VV eeccttoorr((iinntt ss));;
ddoouubb llee&& ooppeerraattoorr[[]]((iinntt ii));;
iinntt ssiizzee(());;

pprr iivvaattee::
ddoouubb llee∗∗ eelleemm;; //// elem points to an array of sz doubles
iinntt sszz;;

}};;

The key point here is that the function bodies, the function definitions, are ‘‘elsewhere.’’
For this example, we might like for the representation of VV eeccttoorr to be ‘‘elsewhere’’ also,
but we will deal with that later (abstract types; §3.2.3). The definition of ssqqrr tt(()) will look
like this:

ddoouubb llee ssqqrrtt((ddoouubbllee dd)) //// definition of sqrt()
{{

//// ... algorithm as found in math textbook ...
}}

For VV eeccttoorr, we need to define all three functions:

VV eeccttoorr::::VVeeccttoorr((iinntt ss)) //// definition of the constructor
::eelleemm{{nnee ww ddoouubbllee[[ss]]}},, sszz{{ss}}

{{
}}

ddoouubb llee&& VVeeccttoorr::::ooppeerraattoorr[[]]((iinntt ii)) //// definition of subscripting
{{

rreettuurr nn eelleemm[[ii]];;
}}

iinntt VVeeccttoorr::::ssiizzee(()) //// definition of size()
{{

rreettuurr nn sszz;;
}}

The VV eeccttoorr functions are the ones we define, but the ssqqrr tt(()) is part of the standard library.
However, that makes no difference: a library is simply some ‘‘other code we happen to be

The C++ Programming Language, 4th edition ©2012 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.
D R A F T

Section 2.4 Modularity 55

using’’ written using same language facilities as we use.

2.4.1 Separate Compilation [tour1.comp]

C++ supports a notion of separate compilation where user code sees only declarations of
types and functions used. The definitions of those types and functions are in separate
source files and compiled separately. This can be used to organize a program into a set of
semi-independent fragments.

Typically, we place the declarations that specify the interface to a module in a file with
a name indicating its intended use. For example:

//// Vector.h:

ccllaassss VVeeccttoorr {{
ppuubb lliicc::

VV eeccttoorr((iinntt ss));;
ddoouubb llee&& ooppeerraattoorr[[]]((iinntt ii));;
iinntt ssiizzee(());;

pprr iivvaattee::
ddoouubb llee∗∗ eelleemm;; //// elem points to an array of sz doubles
iinntt sszz;;

}};;

This declaration would be placed in a file VV eeccttoorr..hh, and users will include that file, called a
header file, like this to access that interface:

//// user.cpp:

##iinncclluuddee ""VVeeccttoorr..hh"" //// get the interface
##iinncclluuddee ""mmaatthh..hh"" //// get the interface including sqrt()

ddoouubb llee ff((VVeeccttoorr&& vv))
{{

ddoouubb llee ssuumm == 00;;
ff oorr ((iinntt ii==00;; ii<<vv..ssiizzee(());; ++++ii))

ssuumm++==ssqqrr tt((vv[[ii]]));;
rreettuurr nn ssuumm;;

}}

To help the compiler ensure consistency, the ..ccpppp file providing the implementation of
VV eeccttoorr will also include the ..hh file providing its interface:

//// Vector.cpp:

##iinncclluuddee ""VVeeccttoorr..hh"" //// get the interface

VV eeccttoorr::::VVeeccttoorr((iinntt ss)) ::eelleemm{{nneeww ddoouubbllee[[ss]]}},, sszz{{ss}} {{ }}

The C++ Programming Language, 4th edition ©2012 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.
D R A F T

56 A Tour of C++: The Basics Chapter 2

ddoouubb llee&& VVeeccttoorr::::ooppeerraattoorr[[]]((iinntt ii)) {{ rreettuurrnn eelleemm[[ii]];; }}

iinntt VVeeccttoorr::::ssiizzee(()) {{ rreettuurrnn sszz;; }}

The code in uusseerr ..ccpppp and VV eeccttoorr..ccpppp shares the VV eeccttoorr interface information presented in
VV eeccttoorr..hh, but the two files are otherwise independent and can be separately compiled.
Graphically, the program fragments can be represented like this:

VV eeccttoorr interface

##iinncclluuddee ""VVeeccttoorr..hh""
use VV eeccttoorr

##iinncclluuddee ""VVeeccttoorr..hh""
define VV eeccttoorr

Vector.h:

user.cpp: Vector.cpp:

Strictly speaking, using separate compilation isn’t a language issue; it is an issue of how
best to take advantage of a particular language implementation. However, it is of great
practical importance. The best approach is to maximize modularity, represent that modu-
larity logically through language features, and then exploit the modularity physically
through files for effective separate compilation (Chapter 14, Chapter 15).

2.4.2 Namespaces [tour1.namespace]

In addition to functions (§2.2.1, Chapter 12), classes (Chapter 16), and enumerations
(§2.3.3, §8.4), C++ offers namespaces (Chapter 14) as a mechanism for expressing that
some declarations belong together and that their names shouldn’t clash with other names.
For example, I might want to experiment with my own complex number type (§3.2.1.1,
§18.3, §39.4):

nnaammeessppaaccee MMyy__ccooddee {{
ccllaassss ccoommppllee xx {{ //** ... **// }};;
ccoommppllee xx ssqqrrtt((ccoommpplleexx));;
//// ...
iinntt mmaaiinn(());;

}}

iinntt MMyy__ccooddee::::mmaaiinn(())
{{

ccoommppllee xx zz {{11,,22}};;
aauuttoo zz22 == ssqqrrtt((zz));;
ssttdd::::ccoouutt <<<< ’’{{’’ <<<< zz22..rreeaall(()) <<<< ’’,,’’ <<<< zz22..iimmaagg(()) <<<< ""}}\\nn"";;
//// ...

}};;

The C++ Programming Language, 4th edition ©2012 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.
D R A F T

Section 2.4.2 Namespaces 57

iinntt mmaaiinn(())
{{

rreettuurr nn MMyy__ccooddee::::mmaaiinn(());;
}}

By putting my code into the namespace MMyy__ccooddee, I make sure that my names do not con-
flict with the standard-library names in namespace ssttdd (§4.1.2). The precaution is wise,
because the standard library does provide support for ccoommppllee xx arithmetic (§3.2.1.1, §39.4).

The simplest way to access a name in another namespace is to qualify it with the
namespace name (e.g., ssttdd::::ccoouutt and MMyy__ccooddee::::mmaaiinn). The ‘‘real mmaaiinn(())’’ is defined in the
global namespace; that is, not local to a defined namespace, class, function, etc. To gain
access to all the names in the standard-library namespace, we can use a uussiinngg-directive
(§14.2.3):

uussiinngg nnaammeessppaaccee ssttdd;;

Namespaces are primarily used to organize larger program components, such as libraries.
They simplify the composition of a program out of separately developed parts.

2.4.3 Error Handling [tour1.error]

Error handling is a large and complex topic with concerns and ramifications that go far
beyond language facilities into programming techniques and tools. However, C++ pro-
vides a few features to help. The major tool is the type system itself. Instead of painstak-
ingly building up our applications from the built-in types (e.g. cchhaarr, iinntt,, and ddoouubb llee) and
statements (e.g., iiff, wwhhiillee ,, and ff oorr), we build more types that are appropriate for our applica-
tion (e.g. ssttrr iinngg, mmaapp, and rreeggee xx) and algorithms (e.g., ssoorr tt(()), fifinndd__iiff(()),, and ddrr aaww__aallll(())). Such
higher level constructs simplify our programming, limit our opportunities for mistakes
(e.g., you are unlikely to try to apply a tree traversal to a dialog box) and increase the com-
piler’s chances to catch such errors. The majority of C++ constructs are dedicated to the
design and implementation of elegant and efficient abstractions (e.g., user-defined types
and algorithms using them). One effect of this modularity and abstraction (in particular,
the use of libraries) is that the point where a run-time error can be detected is separated
from the point where it can be handled. As programs grow, and especially when libraries
are used extensively, standards for handling errors become important.

2.4.3.1 Exceptions [tour1.exception]

Consider again the VV eeccttoorr example. What ought to be done when we try to access an ele-
ment that is out of range for the vector from §2.3.2?

• The writer of VV eeccttoorr doesn’t know what the user would like to hav e done in this case
(the writer of VV eeccttoorr typically doesn’t even know in which program the vector will
be running).

• The user of VV eeccttoorr cannot consistently detect the problem (if the user could, the out-
of-range access wouldn’t happen in the first place).

The solution is for the VV eeccttoorr implementer to detect the attempted out-of-range access and
then tell the user about it. The user can then take appropriate action. For example,

The C++ Programming Language, 4th edition ©2012 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.
D R A F T

58 A Tour of C++: The Basics Chapter 2

VV eeccttoorr::::ooppeerraattoorr[[]](()) can detect an attempted out-of-range access and throw an oouutt__ooff__rr aannggee
exception:

ddoouubb llee&& VVeeccttoorr::::ooppeerraattoorr[[]]((iinntt ii))
{{

iiff ((ii<<00 |||| ssiizzee(())<<==ii)) tthhrrooww oouutt__ooff__rraannggee{{""VVeeccttoorr::::ooppeerraattoorr[[]]""}};;
rreettuurr nn eelleemm[[ii]];;

}}

The tthhrroo ww transfers control to a handler for exceptions of type oouutt__ooff__rr aannggee in some func-
tion that directly or indirectly called VV eeccttoorr::::ooppeerraattoorr[[]](()). To do that, the implementation will
unwind the function call stack as needed to get back to the context of that caller (§13.5.1).
For example:

vv ooiidd ff((VVeeccttoorr&& vv))
{{

//// ...
ttrr yy {{ //// exceptions here are handled by the handler defined below

vv[[vv ..ssiizzee(())]] == 77;; //// tr y to access beyond the end of v
}}
ccaattcchh ((oouutt__ooff__rraannggee)) {{ //// oops: out_of_range error

//// ... handle range error ...
}}
//// ...

}}

We put code for which we are interested in handling exceptions into a ttrr yy-block. That
attempted assignment to vv[[vv ..ssiizzee(())]] will fail. Therefore, the ccaattcchh-clause providing a handler
for oouutt__ooff__rr aannggee will be entered. The oouutt__ooff__rr aannggee type is defined in the standard library
and is in fact used by some standard-library container access functions.

Use of the exception-handling mechanisms can make error handling simpler, more sys-
tematic, and more readable. See Chapter 13 for further discussion, details, and examples.

2.4.3.2 Invariants [tour1.invariant]

The use of exceptions to signal out-of-range access is an example of a function checking
its argument and refusing to operate because a basic assumption, a precondition, didn’t
hold. Had we formally specified VV eeccttoorr’s subscript operator, we would have said some-
thing like ‘‘the index must be in the [00:ssiizz ee(())) range,’’ and that was in fact what we tested in
our ooppeerr aattoorr[[]](()). Whenever we define a function, we should consider what its preconditions
are and if feasible test them (see §12.4, §13.4).

However, ooppeerr aattoorr[[]](()) operates on objects of type VV eeccttoorr and nothing it does makes any
sense unless the members of VV eeccttoorr have ‘‘reasonable’’ values. In particular, we did say
‘‘elem points to an array of sz doubles’’ but we only said that in a comment. Such a state-
ment of what is assumed to be true for a class is called a class invariant, or simply an
invariant. It is the job of a constructor to establish the invariant for its class (so that the
member functions can rely on it) and for the member functions to make sure that the

The C++ Programming Language, 4th edition ©2012 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.
D R A F T

Section 2.4.3.2 Invariants 59

invariant holds when they exit. Unfortunately, our VV eeccttoorr constructor only partially did its
job. It properly initialized the VV eeccttoorr members, but it failed to check that the arguments
passed to it made sense. Consider:

VV eeccttoorr vv((−−2277));;

This is likely to cause chaos. Here is a more appropriate definition:

VV eeccttoorr::::VVeeccttoorr((iinntt ss))
{{

iiff ((ss<<00)) tthhrrooww lleennggtthh__eerrrroorr{{}};;
eelleemm == nneeww ddoouubbllee[[ss]];;
sszz == ss;;

}}

I use the standard-library exception lleennggtthh__eerrrroorr to report a non-positive number of ele-
ments because some standard-library operations use that exception to report problems of
this kind. If operator nnee ww can’t find memory to allocate, it throws a ssttdd::::bbaadd__aalllloocc. We can
now write

vv ooiidd tteesstt(())
{{

ttrr yy {{
VV eeccttoorr vv((−−2277));;

}}
ccaattcchh ((ssttdd::::lleennggtthh__eerrrroorr)) {{

//// handle negative size
}}
ccaattcchh ((ssttdd::::bbaadd__aalllloocc)) {{

//// handle memory exhaustion
}}

}}

You can define your own classes to be used as exceptions and have them carry arbitrary
information from a point where an error is detected to a point where it can be handled
(§13.5).

Often, a function has no way of completing its assigned task after an exception is
thrown. Then, ‘‘handling’’ an exception simply means doing some minimal local cleanup
and rethrowing the exception (§13.5.2.1).

The notion of invariants is central to the design of classes and preconditions serve a
similar role in the design of functions:

• It helps us to understand precisely what we want.
• It forces us to be specific; that gives us better chance of getting our code correct

(after debugging and testing).
More concretely, the notion of invariants underlies C++’s notions of resource management
supported by constructors (§2.3.2) and destructors (§3.2.1.2, §5.2). See also §13.4,
§16.3.1, and §17.2.

The C++ Programming Language, 4th edition ©2012 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.
D R A F T

60 A Tour of C++: The Basics Chapter 2

2.4.3.3 Static Assertions [tour1.assert]

Exceptions report errors found at run time. If an error can be found at compile time, it is
usually preferable to do so. That’s what much of the type system and the facilities for
specifying the interfaces to user-defined types are for. Howev er, we can also perform sim-
ple checks on other properties that are known at compile time and report failures as com-
piler error messages. For example:

ssttaattiicc__aasssseerr tt((44<<==ssiizzeeooff((iinntt)),, ""iinntteeggeerrss aarree ttoooo ssmmaallll""));; //// check integer size

This will write iinntteeggeerrss aarree ttoooo ssmmaallll if 44<<==ssiizz eeooff((iinntt)) does not hold; that is, if an iinntt on this
system does not have at least 4 bytes. Such statements of expectations are called asser-
tions.

The ssttaattiicc__aasssseerr tt mechanism can be used for anything that can be expressed in terms of
constant expressions (§2.2.3, §10.4). For example:

ccoonnssttee xxpprr ddoouubbllee CC == 229999779922..445588;; //// km/s

vv ooiidd ff((ddoouubbllee ssppeeeedd))
{{

ccoonnsstt ddoouubbllee llooccaall__mmaaxx == 116600∗∗6600∗∗6600;; //// 160 km/h

ssttaattiicc__aasssseerr tt((ssppeeeedd<<CC,,""ccaann’’tt ggoo tthhaatt ffaasstt""));; //// error : speed must be a constant
ssttaattiicc__aasssseerr tt((llooccaall__mmaaxx<<CC,,""ccaann’’tt ggoo tthhaatt ffaasstt""));; //// OK

//// ...
}}

In general, ssttaattiicc__aasssseerr tt((AA,,SS)) prints SS as a compiler error message if AA is not ttrr uuee.
The most important uses of ssttaattiicc__ccaasstt come when we to make assertions about types

used as parameters in generic programming (§5.4.2, §24.3).

2.5 Postscript [tour1.postscript]

The topics covered in this chapter roughly correspond to the contents of Part II (Chapters
5-15). Those are the parts of C++ that underlie all programming techniques and styles
supported by C++. Experienced C and C++ programmers, please note that this foundation
does not closely correspond to the C or C++98 subsets of C++ (that is, C++11).

2.6 Advice [tour1.advice]

[1] Don’t panic! All will become clear in time; §2.1.
[2] You don’t hav e to know every detail of C++ to write good programs; §1.3.1.
[3] Focus on programming techniques, not on language features; §2.1.

The C++ Programming Language, 4th edition ©2012 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.
D R A F T

