
Random Number Generation in C++11

Document #: WG21 N3551
Date: 2013-03-12
Revises: None
Project: JTC1.22.32 Programming Language C++
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Introduction 1
2 Getting started 2
3 An anti-pattern 3
4 Initializing an engine 3
5 What else can an engine do? 4
6 Engines in the standard library 5
7 Sharing an engine 5
8 Distributions in the standard library 6
9 What else can a distribution do? 8
10 A simple toolkit 9
11 A final example 9
12 Caveat lector! 10
13 What’s next? 11
14 Acknowledgments 11
15 Bibliography 11
16 Revision history 12

Abstract

For programmers seeking to familiarize themselves with the <random> component of the
C++11 standard library, we provide background information and tutorial guidance with numer-
ous usage examples.

1 Introduction

The production of random numbers has been an important application for computers since the
beginning of the modern era of computation.1 Alas, the C++ standard library has historically
provided rather limited support, all of it adopted from the C standard library [Ker88, §7.8.7]. In
header <cstdlib> (the C++ version of C’s <stdlib.h>) we find:

• RAND_MAX, a macro that expands to an integer constant;
• std::rand(), a function that produces a pseudo-random number in the closed interval

[0, RAND_MAX]; and
• std::srand(), a function to initialize (seed) a new sequence of such numbers.

Copyright c© 2013 by Walter E. Brown. All rights reserved.
1 John von Neumann (né Neumann János Lajos, 1903–1957) is credited as the modern originator of the middle-square

method, which he first described at a 1949 conference and published two years later [vNeu51]. Before that, von Neumann
assisted Stanislaw M. Ulam (1909–1984) in developing the Monte Carlo method, still in heavy use today, for modelling
complicated systems via random numbers and then performing statistical analyses of the resulting behavior.

1

mailto:webrown.cpp@gmail.com

2 N3551: Random Number Generation in C++11

The algorithms underlying even this minimal support have typically been unspecified, and
hence their use has historically been nonportable, with oft-questionable performance and quality;
“indeed, early C standard library implementations provided surprisingly bad generators” [Mau02].

To address the above shortcomings, the C++11 standard provides a new header, <random>.
This article describes the technical underpinnings of this header and provides tutorial guidance
and usage examples for programmers seeking to familiarize themselves with this significant
component of the C++11 standard library.

2 Getting started

The traditional term random number generator encompasses (and unfortunately conflates) two
kinds of functionality. However, C++11’s <random> draws a clear distinction between the two:

• An engine’s role is to return unpredictable (random) bits,2 ensuring that the likelihood of
next obtaining a 0 bit is always the same as the likelihood of next obtaining a 1 bit.3,4

• A distribution’s role is to return random numbers (variates) whose likelihoods correspond to
a specific shape. E.g., a normal distribution produces variates according to a “bell-shaped
curve.”

A user needs an object of each kind in order to obtain a random variate. The purpose of the
engine is to serve as a source of randomness. We always use a distribution as well because “It
makes no sense to ask for a random number without some context. You need to specify random
according to what distribution” [Cook08]. Once we have an engine variable (let’s name it e) and a
distribution variable (let’s name it d),5 each call d(e) delivers one variate.6

The following function illustrates this simple three-step approach in simulating the roll of a fair
(unbiased) die. First, line 5 defines an engine of type default_random_engine, as recommended
by the standard for general use. To produce variates in a die’s range, ensuring that each value
has equal likelihood of appearing next, line 6 defines an appropriately-initialized distribution of
type uniform_int_distribution<int>. Finally, line 7 obtains and returns the desired variate:

1 #include <random>

3 int roll_a_fair_die()
4 {
5 static std::default_random_engine e{};
6 static std::uniform_int_distribution<int> d{1, 6};
7 return d(e);
8 }

2 Unpredictability is the ideal. Using a computer, we generally settle for very-very-very-very-hard-to-predict (pseudo-
random) bits.

3 Using mathematical probability notation, this uniformity property can be compactly expressed as p(0) = p(1).
4 To reduce overhead and improve throughput, C++ engines typically compute and return many bits per call by

encoding them into a single result of an unsigned integer type. For an engine of type E, these uniformly distributed
unsigned values will lie in the closed range [E::min(), E::max()]. The number, b, of bits of randomness per call can be
calculated as b = log2(E::max()−E::min()+1).

5 The terms engine and distribution are applied not only to types meeting certain requirements specified in the C++11
standard, but also to objects of such types.

6 Note that our code doesn’t call engine e directly. Instead, the distribution d will do so, when and as often as needed,
on our behalf.

N3551: Random Number Generation in C++11 3

3 An anti-pattern

Noting that an engine’s results are already uniformly distributed, casual programmers often
believe that it’s not necessary to use any uniform_int_distribution. Instead, they transform
their engine’s output via their own algorithm in order to obtain variates in their desired range.

Here is a simple yet typical example7 of such a misguided attempt to model the roll of a single
fair die:

1 int roll_a_biased_die()
2 {
3 static std::default_random_engine e{};
4 return 1 + e() % 6; // wrong!
5 }

Seemingly attractive, this function nonetheless is subtly wrong for two reasons:

• The function assumes that the engine’s range spans at least six different values. Although
most engines do span more than six values (and many span far more), an engine’s range is
technically required to span only two values.

• More importantly, “[the remainder] operation does not generate uniformly distributed random
numbers (since in most cases this operation makes lower numbers slightly more likely)” [Cpp].

In either case, the function produces unfair (biased) results because its resulting values are
incorrectly distributed.8

Some believe that the above anti-pattern is still “good enough” for casual use, but we respect-
fully disagree. At best, code such as shown above is sloppy; at worst, it gives erroneous results
that are extremely hard to detect. Moreover, the code is likely over time to find its way into other,
less tolerant, applications. We recommend avoiding such questionable code in the first place.
Even in the rare cases that an engine’s output actually happens to match a desired distribution,
the absence of an explicit distribution forces each future reader of the code to expend mental
energy verifying application correctness despite such an obvious lack.

Better still, standard-conforming distributions cope with all engine corner cases, even unlikely
ones. For example, if an engine delivers fewer bits per call than needed, the distribution will make
multiple calls until it has enough bits to let it satisfy the entire desired range of variates. On the
other hand, if an engine produces more bits than needed, a distribution is free to cache the excess
for use the next time it is called.

4 Initializing an engine

The process of initialization is often characterized to non-programmers as a “warming-up” stage.
Properly initializing (seeding) an engine object can be critical to its subsequent correct behavior.

As we did above, an engine can be default-initialized. In this case, an engine’s initial state is
defined by its default constructor, whether invoked implicitly or explicitly:

1 std::default_random_engine e1; // implicitly default-initialized
2 std::default_random_engine e2{}; // explicitly default-initialized

As one alternative, an engine’s initial state can be influenced by providing an explicit starting
value (a seed) to its constructor:

7 To conserve space, we assume the #include <random> directive in this and most of our remaining code examples.
8 See [Koe00, §7.4.4] for a somewhat expanded discussion and a function that copes with the bias via a simple

rejection algorithm.

4 N3551: Random Number Generation in C++11

1 std::default_random_engine e3{13607};

When value-initialized in this way, the type of the seed must be the same as (or convertible to)
the type of the values produced by the engine. For an engine e of type E, this type is available as
decltype(e()).9

When a program is run multiple times, its engine will always emit the same sequence of uniform
bits if the engine is always initialized to the same state. Such replication can be very useful while
debugging a program or reproducing research, for example. In other contexts, replication can be
undesireable and even problematic.

To escape replication, the engine’s seed must vary from run to run. Traditional approaches
to this seeding subproblem involve the use of the system clock (e.g., via time(0)) or access to
other system-specific sources of entropy (e.g., via /dev/urandom, where available). Programmers
can avoid the need for such extra-linguistic facilities by using an object of type random_device to
obtain a seed:10

1 std::random_device rdev{};
2 std::default_random_engine e{rdev()};

Finally, note that an engine’s state can be reset any time after it has been initialized. Calling
a seed() member forces the engine into the same state it would have had upon corresponding
initialization:

1 void f(std::default_random_engine & e4, std::random_device & rd)
2 {
3 e4.seed(13607); // e4 state now as if initialized by 13607
4 · · ·
5 e4.seed(); // now as if default-initialized
6 · · ·
7 e4.seed(rd()); // now as if initialized via the device-obtained seed
8 }

5 What else can an engine do?

An engine has additional important capabilities not yet mentioned. For example:

• Engines are streamable, allowing save and restore, via operators << and >>.
• Engines of the same type can be compared for equality/inequality.
• Engines can be seeded in still more ways than described above.
• Engines can skip (discard) generated values.

Because no distribution uses any of these extras, the standard library takes a two-tiered
approach in specifying required behavior:

• A type that meets a distribution’s modest needs is known as a URNG (Uniform Random
Number Generator);

• A URNG that also has all the extra capabilities is then termed an engine.

9 There are also two alternatives: std::result_of<E()>::type, which is a bit wordier, and typename
E::result_type, the C++98-style interface that was the only option when <random> was first proposed in 2002. With
the advent of decltype in C++11, the old-style result_type forms are being considered for deprecation throughout the
library in a future revision of the C++ standard.

10 It is worth keeping in mind that “there’s no guarantee about which random device you get.... Implementations
can define a string argument to the constructor that selects between the choices, but the default is supposed to be
decent” [Yass11].

N3551: Random Number Generation in C++11 5

Except for std::random_device, all URNGs provided in the C++11 standard library are also
engines.

The C++11 random number facility was also designed to be extensible. The standard carefully
specifies the requirements so that knowledgeable users may devise and provide URNGs and engines
of their own and have their types seamlessly interoperate with <random> and the rest of the
standard library. Indeed, several new random number engines have been described in the recent
literature, accompanied by sample C++ implementations that satisfy these requirements.11

6 Engines in the standard library

The C++11 standard library provides, in namespace std, engine types aimed at several different
kinds of users.

• The library provides default_random_engine, an alias for an engine type selected by the
library vendor, according to the standard, “on the basis of performance, size, quality, or
any combination of such factors, . . . for relatively casual, inexpert, and/or lightweight use.”
Because distinct vendors are free to select differently, code that uses this alias need not
generate identical sequences across implementations.

• For knowledgable users, the library provides nine additional aliases for pre-configured
engine types of known good quality.12 These types span a wide spectrum of trade-offs in
performance and size. Among other characteristics, the C++11 standard requires that these
engines produce bit-for-bit identical results across implementations.

◦ Linear congruential engines: minstd_rand0, minstd_rand
◦ Mersenne twister engines: mt19937, mt19937_64
◦ Subtract with carry engines: ranlux24_base, ranlux48_base
◦ Discard block engines: ranlux24, ranlux48
◦ Shuffle order engine: knuth_b

• For experts (e.g., researchers), the library provides the following templates that can be
configured via template parameters13 (and in some cases then combined) to provide additional
engine types.

◦ linear_congruential_engine ◦ discard_block_engine
◦ mersenne_twister_engine ◦ independent_bits_engine
◦ subtract_with_carry_engine ◦ shuffle_order_engine

7 Sharing an engine

It is common to find that an application needs to use an engine in more than one place. Rather
than creating multiple independent engines, one to each purpose, a single engine can be created
and shared (made available) wherever needed.14 Perhaps the simplest way to do this is to make
the engine local to a function that, when called, grants access to that engine:

11 See, for example, [Sal11].
12 The algorithmic characteristics of these engines (and also of the distributions described in the next section) have

been carefully studied for many years. Their properties have become well understood, and have been described in
numerous articles and books. For the reader interested in such details, we recommend [Knu97, chapter 3] as a starting
point.

13 Even experts should keep in mind that “Very few combinations of parameters actually result in engines of decent
quality, but the committee philosophically leaned toward generality.... The point is that the concrete engines provided by
the standard have known (and good) properties, while the [non-expert] user who fools with parameters other than these
should know that he is doing something foolish” [Fis10].

14 A hybrid approach is, of course, also possible. For example, each of several threads can create a thread-local engine
and share it with the functions in that thread only.

6 N3551: Random Number Generation in C++11

1 std::default_random_engine & my_engine()
2 {
3 static std::default_random_engine<> e{};
4 return e;
5 }

Such a function can be enhanced with appropriate synchronization if the engine is to be shared
among multiple threads.

We can then use this function to emulate, for example, the C-style rand, srand, and RAND_MAX
interface:15

1 #define RAND_MAX (my_engine().max() - my_engine().min())
2 void srand(unsigned s = 1u) { my_engine().seed(s); }
3 int rand() { return my_engine()() - my_engine().min(); }

8 Distributions in the standard library

The C++11 standard library provides, in namespace std, twenty distribution types in five broad
categories. While there are many, many other useful distributions, the following were selected for
standardization based on the criteria presented in [Pat04].

• Uniform distributions:

◦ uniform_int_distribution ◦ uniform_real_distribution

• Bernoulli distributions:
◦ bernoulli_distribution ◦ geometric_distribution
◦ binomial_distribution ◦ negative_binomial_distribution

• Poisson distributions:
◦ poisson_distribution ◦ gamma_distribution
◦ exponential_distribution ◦ weibull_distribution
◦ extreme_value_distribution

• Normal distributions:
◦ normal_distribution ◦ fisher_f_distribution
◦ cauchy_distribution ◦ lognormal_distribution
◦ chi_squared_distribution ◦ student_t_distribution

• Sampling distributions:

◦ discrete_distribution ◦ piecewise_linear_distribution
◦ piecewise_constant_distribution

Most of these distributions are specified as class templates whose template parameter is the
type of the variate to be produced. Some distributions are designed to deliver variates of only
integer types, while others are designed to deliver variates of only floating-point types. The former
is exemplified by discrete_distribution, while the latter is exemplified by uniform_real_
distribution. The bernoulli_distribution is designed to deliver only bool variates, and is
the only standard library distribution that is a class rather than a class template.

In much the same way as was done for URNG and engine types, the C++11 standard specifies
the minimum requirements for distribution types. By adhering to these requirements, users
can provide their own distributions and be confident that these distributions will seamlessly
interoperate with any URNG, whether provided by the user or by the standard library. The net
effect is that any URNG can be used with any distribution.

15 We do not recommend using this interface; we present it here only as an illustration of the techniques described.

N3551: Random Number Generation in C++11 7

To select among the available distributions, it is typically necessary to begin with a firm
understanding of the random process being modelled. For example, rolling a single die follows a
uniform distribution as shown earlier, but rolling a pair of dice follows a different distribution:

1 int roll_2_fair_dice()
2 {
3 static std::default_random_engine e{};
4 static std::discrete_distribution<> d{ { 1.0 // weight(2)
5 , 2.0 // weight(3)
6 , 3.0 // weight(4)
7 , 4.0 // weight(5)
8 , 5.0 // weight(6)
9 , 6.0 // weight(7)

10 , 5.0 // weight(8)
11 , 4.0 // weight(9)
12 , 3.0 // weight(10)
13 , 2.0 // weight(11)
14 , 1.0 // weight(12)
15 } };

17 return 2 + d(e);
18 }

It seems clear that we could produce a family of analogous functions if we need to simulate
the roll of three dice, of four dice, etc. However, let’s consider a different approach in which the
previous two dice-rolling functions are consolidated so as to obtain a function simulating the roll
of an arbitrary number of dice, specified as the function’s argument.

The following example employs such a consolidated approach to demonstrate (a) that a single
engine object can serve as a source of randomness for several distributions, and (b) that each
distribution is initialized according to its own requirements.

1 int roll_fair_dice(std::size_t n_dice)
2 {
3 static std::default_random_engine e{};
4 static std::uniform_int_distribution<> d1{1, 6};
5 static std::discrete_distribution<> d2{ { 1.0 // weight(2)
6 , 2.0 // weight(3)
7 , 3.0 // weight(4)
8 , 4.0 // weight(5)
9 , 5.0 // weight(6)

10 , 6.0 // weight(7)
11 , 5.0 // weight(8)
12 , 4.0 // weight(9)
13 , 3.0 // weight(10)
14 , 2.0 // weight(11)
15 , 1.0 // weight(12)
16 } };

18 auto roll_1_fair_die = [&] { return d1(e); };
19 auto roll_2_fair_dice = [&] { return 2 + d2(e); };

21 int total{ n_dice % 2u == 1u ? roll_1_fair_die()
22 : 0
23 };
24 for(; n_dice > 1u; n_dice -= 2u)

8 N3551: Random Number Generation in C++11

25 total += roll_2_fair_dice();
26 return total;
27 }

9 What else can a distribution do?

As illustrated above, a distribution is instantiated with parameters that are unique to the dis-
tribution’s type. For example, a uniform_int_distribution has lower and upper bounds as
parameters, while the parameters of a normal_distribution consist of the desired mean and
standard deviation instead. Each call to a distribution uses the arguments with which the
distribution was initialized to produce variates tailored to the application.

Each conforming distribution has an associated nested type, param_type, that serves to
bundle a collection of initial values for that distribution. A param_type object always has the
same parameters as its corresponding distribution, and can thus be constructed the same way:

1 using dist_t = std::uniform_int_distribution<>;
2 using param_t = dist_t::param_type;

4 dist_t d{1, 6};
5 param_t p{1, 6};

Just as a conforming engine can be reseeded, each conforming distribution allows its pa-
rameters’ values to be adjusted permanently or temporarily. To make a temporary parameter
adjustment, we construct a param_type object and then pass it as part of the call to the distribu-
tion:

1 int roll_n_sided_die(int n)
2 {
3 using engine_t = std::default_random_engine;
4 using dist_t = std::uniform_int_distribution<>;
5 using param_t = dist_t::param_type;

7 static engine_t e{};
8 static dist_t d{1, 6};

10 param_t p{1, n};
11 return d(e, p);
12 }

To make a permanent parameter adjustment, we construct a param_type object and pass it to
the distribution’s param function:

1 std::normal_distribution<> d{0.0, 1.0};
2 · · ·
3 using param_t = std::normal_distribution<>::param_type;
4 param_t p{0.0, 0.2};
5 d.param(p); // use new parameters henceforth

Finally, each conforming distribution can be queried to obtain the values of its current
parameters. Individual parameters can be obtained in a distribution-dependent manner; for
example, a normal_distribution has members mean() and stddev() for such a purpose, while

N3551: Random Number Generation in C++11 9

a uniform_int_distribution has members a() and b(). Alternatively, a call to param() (with
no arguments) will obtain a param_type bundle of all the current parameter values.

10 A simple toolkit

We present the following four functions as an example that not only combines many of the
techiques described above, but that also provides a coherent toolkit of some of of <random>’s most
commonly-used features. In the spirit of default_random_engine, these functions are likewise
intended for “casual, inexpert, and/or lightweight use” and are recommended as replacements for
std::rand() and its friends:

• global_urng()
Shares a single URNG with the other functions in this toolkit.

• randomize()
Sets the shared URNG to an unpredictable state.

• pick_a_number(from,thru)
Returns an int variate uniformly distributed in [from, thru].

• pick_a_number(from,upto)
Returns a double variate uniformly distributed in [from, upto).

1 std::default_random_engine & global_urng()
2 {
3 static std::default_random_engine u{};
4 return u;
5 }

7 void randomize()
8 {
9 static std::random_device rd{};

10 global_urng().seed(rd());
11 }

13 int pick_a_number(int from, int thru)
14 {
15 static std::uniform_int_distribution<> d{};
16 using parm_t = decltype(d)::param_type;
17 return d(global_urng(), parm_t{from, thru});
18 }

20 double pick_a_number(double from, double upto)
21 {
22 static std::uniform_real_distribution<> d{};
23 using parm_t = decltype(d)::param_type;
24 return d(global_urng(), parm_t{from, upto});
25 }

11 A final example

While the following example exploits a number of features new in C++11, note especially the
std::shuffle() algorithm. A variant of C++03’s std::random_shuffle(), std::shuffle() is
designed to use a C++11 URNG16 as its source of randomness. The appropriate distribution is

16 Recall from §5 that each conforming engine also satisifies the requirements of a URNG type.

10 N3551: Random Number Generation in C++11

internal to the algorithm, so no distribution need be provided by users. We also employ parts of
the toolkit presented in the previous section:

1 #include <algorithm>
2 #include <array>
3 #include <iostream>
4 #include <random>

6 int
7 main()
8 {
9 // Manufacture a deck of cards:

10 using card = int;
11 std::array<card,52> deck{};
12 std::iota(deck.begin(), deck.end(), 0);

14 // Shuffle the deck:
15 randomize();
16 std::shuffle(deck.begin(), deck.end(), global_urng());

18 // Display each card in the shuffled deck:
19 auto suit = [](card c) { return "SHDC"[c / 13]; };
20 auto rank = [](card c) { return "AKQJT98765432"[c % 13]; };
21 for(card c : deck)
22 std::cout << ’ ’ << rank(c) << suit(c);
23 std::cout << std::endl;
24 }

12 Caveat lector!

An early specification of <random> was published in [ISO07] in order to make it accessible to a
wider community of users and to obtain their feedback toward the facility’s evolution. In retrospect,
the process worked as intended, and the now-standard version is as a result much improved over
that early version in many important ways.17

Of course, in the interim a number of publications were produced by early adopters, comment-
ing on and offering advice regarding the then-new facility. Because many of the later improvements
to <random> rely on new C++11 core language features or are otherwise not backward-compatibile,
the technical content of early writings (and, alas, of even some recent ones!) is often now at least
somewhat suspect.

Moreover, in our experience, many <random>-related blogs and articles (a) give programming
advice based on what seems to be a questionable understanding of the meaning, behavior, and
properties of randomness, and (b) express opinion (commonly presented as fact) based on what
seems to be a questionable understanding of <random>’s design. For all these reasons, we

17 Many of the differences between the early and the final versions of <random> are described in [Bro06].

N3551: Random Number Generation in C++11 11

recommend that readers carefully consider the sources and dates of such publications before
relying on them, especially in a C++11 context.

13 What’s next?

With C++14 (and even C++17!) on the horizon, three distinct <random>-related adjustments are
under consideration for future standardization. Here’s a very brief overview; please see [Bro13] for
the details of these proposals:

• Augmenting the <algorithm> header with sample, a well-known function to obtain a random
sample of a requested size from a population whose size might be unknown.

• Augmenting the <random> header with a few novice-friendly functions much like those in
the small toolkit shown above.

• Deprecating the use of std::rand() and its friends, a first step toward removing these
functions (in a decade or so) from the std namespace.

14 Acknowledgments

Many thanks to the readers of early drafts of this paper for their helpful and insightful feedback.

15 Bibliography

[Bro06] Walter E. Brown, et al.: “Improvements to TR1’s Facility for Random Number Generation.” ISO/
IEC JTC1/SC22/WG21 document N1933 (pre-Berlin mailing), 2006-02-23.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1933.pdf.

[Bro13] Walter E. Brown: “Three <random>-related Proposals.” ISO/IEC JTC1/SC22/WG21 document
N3547 (pre-Bristol mailing), 2013-03-08.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3547.pdf.

[Cook08] John D. Cook: “Pitfalls in Random Number Generation.” 2008-10-23.
http://www.codeproject.com/KB/recipes/pitfalls_random_number.aspx.

[Cpp] cplusplus.com: “function rand.” Undated.
http://www.cplusplus.com/reference/cstdlib/rand/.

[DuT12] Stefanus Du Toit: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N3485 (post-Portland mailing), 2012-11-02.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3485.pdf.

[Fis10] Mark S. Fischler: Private correspondence. 2010-05-27.

[ISO07] International Organization for Standardization: “Information technology — Programming lan-
guages — Technical Report on C++ Library Extensions.” ISO/IEC document TR 19768:2007.

[Ker88] Brian W. Kernighan and Dennis M. Ritchie: The C Programming Language (Second Edition: ANSI
C). Prentice-Hall, 1988. ISBN: 0-131-10370-9.

[Knu97] Donald E. Knuth: Seminumerical Algorithms (Third Edition). Addison-Wesley, 1997. Volume 2 of
The Art of Computer Programming. ISBN 0-201-89684-2.

[Koe00] Andrew Koenig and Barbara E. Moo: Accelerated C++: Practical Programming by Example. Addison-
Wesley, 2000. ISBN 0-201-70353-X.

[Mau02] Jens Maurer: “A Proposal to Add an Extensible Random Number Facility to the Standard Library.”
ISO/IEC JTC1/SC22/WG21 document N1398 (post-SantaCruz mailing), 2002-11-10.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/n1398.html.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1933.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3547.pdf
http://www.codeproject.com/KB/recipes/pitfalls_random_number.aspx
http://www.cplusplus.com/reference/cstdlib/rand/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3485.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/n1398.html

12 N3551: Random Number Generation in C++11

[Pat04] Marc Paterno: “On Random-Number Distributions for C++0x.” ISO/IEC JTC1/SC22/WG21 docu-
ment N1588 (pre-Sydney mailing), 2004-02-13.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1588.pdf.

[Sal11] John K. Salmon, et al.: “Parallel Random Numbers: As Easy as 1, 2, 3.” In SC ’11 Proceedings of
2011 International Conference for High Performance Computing, Networking, Storage and Analysis.
Association for Computing Machinery, 2011. ISBN: 978-1-4503-0771-0.

[vNeu51] John von Neumann: “Various Techniques Used in Connection with Random Digits.” In House-
holder, A. S. et al., eds. Monte Carlo Method, National Bureau of Standards Applied Mathematics
Series, vol. 12. U. S. Government Printing Office, 1951.

[Yass11] Jeffrey Yasskin: Untitled response to posted question. In “generating random numbers in C++
using TR1 /dev/random . . . ,” 2011-12-28.
http://stackoverflow.com/questions/8661231/generating-random-numbers-in-c-using-tr1-
dev-random-resilient-to-1-second-r.

16 Revision history

Revision Date Changes

1.0 2013-03-12 • Published as N3551.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1588.pdf
http://stackoverflow.com/questions/8661231/generating-random-numbers-in-c-using-tr1-dev-random-resilient-to-1-second-r
http://stackoverflow.com/questions/8661231/generating-random-numbers-in-c-using-tr1-dev-random-resilient-to-1-second-r

	1 Introduction
	2 Getting started
	3 An anti-pattern
	4 Initializing an engine
	5 What else can an engine do?
	6 Engines in the standard library
	7 Sharing an engine
	8 Distributions in the standard library
	9 What else can a distribution do?
	10 A simple toolkit
	11 A final example
	12 Caveat lector!
	13 What's next?
	14 Acknowledgments
	15 Bibliography
	16 Revision history

