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Abstract

This paper explores the design space for introducing contracts as part of the interface of functions and types. The
goal is to address the problem of specifying an interface (with special attention to standard library interfaces)
making a clear distinction between a contract violation and an explicitly thrown exception. Preconditions and
postconditions are attached to function declarations (i.e. to interfaces) rather than to definitions, and are, in
principle, checked before and after a function’s definition is entered. No macros are needed.

1 Introduction

In the design of any library there is a tension between two issues that can be seen as related: correctness and
robustness. Correctness can be seen as the degree to which a software component matches its specification.
Robustness is the ability of a software component to react appropriately to abnormal conditions.

Currently the C++ language and many libraries use a single feature for managing both properties: exception
handling.

When a failure happens we use exceptions as an error reporting mechanism, to notify that an error has
occurred and needs to be handled somewhere else. In this way, we allow decoupling the error identification from
the error handling.

Besides, when a library detects that some assumed condition has not been met, it needs a mechanism to
react properly. We call this situation a contract violation. Some libraries just decide not to check contract
violations and just document those options. In that case (e.g. the C++ Standard Library), a contract violation
leads to undefined behavior.

In this paper, I claim that correctness and robustness are orthogonal properties of a program and that they
should be managed independently. This idea is not new, and the approach of independent management of
correctness and robustness can be found in other somehow similar languages (e.g. Ada, Eiffel, D).

1.1 Robustness in the C++ standard library

Robustness is related to the identification and handling of abnormal situations. Normally, these errors occur
even if a program is completely correct. A typical example is a program that cannot read from a file. Such a
failure is treated by throwing an exception an catching it in a different context. Another example is the failure
to allocate dynamic memory.

Currently, the C++ standard library identifies the cases when an abnormal situation may happen, by
specifying i) the condition that may cause that situation and ii) the exception that will be thrown to notify of
that situation.

For example, the standard allocator std::allocator has the following Throws: clause in the specification of
its allocate member function:

Throws: bad alloc if the storage cannot be obtained.

Even if a program is correct, it may fail in allocating memory.
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1.2 Correctness in the C++ standard library

Correctness is related to finding programming errors. Those situations happen due to incorrectly programmed
software. A correctly stated precondition violation happens because the caller is not fulfilling that precondition
before performing the call. A correctly stated postcondition happens because the callee is not fulfilling the
postcondition after execution. A program failure (a robustness error) cannot be avoided in a program, as it
usually depends on some external condition. In contrast, a contract violation (a correctness error), should never
happen in a correctly written program.

In its current form, the C++ standard library documents the preconditions of a function. Section 17.4.6.11
states:

Violation of the preconditions specified in a functions Requires: paragraph results in undefined behavior unless
the functions Throws: paragraph specifies throwing an exception when the precondition is violated.

Thus, in practice, there are two approaches for contract violations in the standard library: either a precon-
dition violation may result in undefined behavior or it may be notified by throwing an exception.

1.3 The narrow and wide contracts

During C++11 standardization final stage there were arguments against aggressive use of noexcept [1]. The
key argument was that the fundamental implication was that such approach would make “functions marked
noexcept difficult to test”. To overcome this difficulty two approaches were outlined: either to lift the require-
ment that a noexcept violation would result in a call to terminate or to impose a severe criteria on when a
standard library function can be marked noexcept.

The route taken by C++11 was the definition of those criteria [2] based on the definitions of wide contracts
(does not specify any undefined behavior and has no precondition) and narrow contracts (results in undefined
behavior when a precondition is violated). With those definitions the adopted guidelines were:

• No library destructor should throw.

• Each library function having a wide contract, that LWG agrees cannot throw, should be marked uncon-
ditionally noexcept.

• If a library swap function, move-constructor, or move-assignment operator is conditionally-wide, then it
should be marked conditionally noexcept.

• No other function should be marked conditionally noexcept.

• Library functions designed for compatibility with “C” code, may be marked as unconditionally noexcept.

There are two opposed views about the use of noexcept. On one hand, there is the view that noexcept

was designed to solve a very specific problem to correctly handle throwing move constructors. This view tries
to limit noexcept to move operations. On the other hand, there is a movement of marking noexcept as much
functions as possible just because they me lead to a performance benefit.

However, noexcept is a specification of an interface to indicate that a a certain function does not throw
exceptions at all. No less and no more than that. Thus, those functions that do not throw to notify that an
abnormal situation has happened should be noexcept.

The current library guidelines make that functions that are conceptually noexcept are not marked so. This
may lead to some performance loses. In fact, this may be seen to be against the principle of zero-overhead.
However, the key point is a different issue. Functions are not marked noexcept even if they should not be
throwing at all.

2 Definitions

To ensure a common understanding I provide a set of definitions that will be used in the rest of the paper.

• Error condition: A condition that when met will lead to an error from which a program may or may
not recover.

• Precondition: A condition that needs to be satisfied prior to the execution of a function.
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• Postcondition: A condition that is ensured to be held after the execution of a function.

• Invariant: A condition that needs to be satisfied prior to the execution of a function and is ensured to
be held after the execution of a function.

• Contract: Set of preconditions, postconditions and invariants associated to a function.

• Contract violation: The execution of a function when a precondition or an invariant is not satisfied
before the function or when a postcondition or invariant is not held after the function execution.

3 Alternatives

Mechanisms have been proposed in the past to handle correctness both in the library and the language level.

3.1 Library solutions

Many solutions have been proposed for supporting contracts in C++.

3.1.1 The assert macro

The most classical solution has been extensive use of assert macro from C. The macro expands to a call to
abort() when macro NDEBUG is not defined. Otherwise it expands to nothing. This leads to a set of issues:

• Assertions are evaluated in the callee site. This means that decision about checking is taken when the
callee is compiled. Thus, one can have either a fully checked library with a performance penalty or a faster
but unchecked library.

• Assertions cannot be distinguished from regular code. This makes impossible for a compiler to take
advantage from semantic information provided in the form of a contract. This information could eventually
be used for optimizations or for supporting formal or semi-formal verifications.

• Assertions do not allow to distinguish between different kinds of conditions. Making these distinctions is
important if they are going to be activated/deactivated separately.

3.1.2 Centralized defensive-programming library

The most recent proposal [3] in the C++ standards committee about contract programming suggested a library
solution for standardization. The proposal contained:

• A definition of a set of build modes (safe-build, debug, optimized).

• A configuration violation-handler mechanism to allow the application developer to make its choice at
run-time among several options (including aborting the program, throwing an exception, . . . ).

• A set of macros for expressing assertions inside implementations of functions.

3.1.3 Limitations of library solutions

While this approach definitely presents key concepts in terms of contract programming, it seems to be focused
on preconditions and does not clarify a route for postconditions and/or invariants.

A key point is the fact that a library solution effectively makes the contract part of the implementation. In
contrast, a contract should be seen as part of component specification. That approach would also allow that
different clients may use the component with or without contract checking.

The introduction of a library solution for contract checking would also prevent a later language-based
solution. A language solution may provide opportunities for better development tools. In particular:

• Language-based solution may be a corner-stone to support formal verification tools. Experiences with
SPARK (http://www.spark-2014.org/) have shown that a language-based contract mechanism is es-
sential for formal verification.

• A compiler may use the contract information for better code generation and take advantage of the extra
information for code optimization.
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3.2 Language solutions

In 2005 a proposal to add contract programming was considered by the Evolution Working Group. The initial
proposal [4] contained a discussion on reasons to prefer a language solution over a library solution. Among
others, the following were included:

• Side effects cannot be detected by library solutions.

• Assertions about return value or about side-effects cannot be done without manually copying the result.

• There is no clear mechanism for inheriting assertions in public virtual functions.

Proposal [5] was discussed at the Lillehammer meeting. Minutes are rather short:

(discussed) N1773 05-0033 : Proposal to add Contract Programming to C++ (revision 2) L. Crowl, T. Ottosen
Straw poll: Evaluate synergies (7/4/3/0)
(Means: authors get 1 hour floor time on the next meeting to present their findings)

At Mont Tremblant meeting a revised proposal [6] was discussed. However no consensus could be achieved
on whether C++0x should pursue contract programming.

The proposal included static assertions and runtime assertions. In this paper the focus is on runtime
assertions, as static assertions can be handled by other means in the language. The basic approach included
the ability to add preconditions and postconditions to functions and invariants to classes. A simplified example
of its use is the following:

double sqrt( double r )
precondition
{

r > 0.;
}
postcondition( result )
{

equal within precision ( result ∗ result , r );
}

Another interesting feature was the use of if statements to express implication assertions:

class vector {
// ...
iterator begin()

postcondition(result) { if (empty()) result ==end(); }
// ...
};

In this set of proposals the default behavior when a contract is violated is to call terminate(). However, a
set of functions are provided to change this default behavior by setting a handler:

typedef void (∗broken contract handler)();

broken contract handler set precondition broken handler (broken contract handler r) throw();
broken contract handler set postcondition broken handler (broken contract handler r) throw();
broken contract handler set class invariant broken handler (broken contract handler r) throw();
broken contract handler set namespace invariant broken handler(broken contract handler r) throw();

This model also included specific rules for handling the cases from inheritance and virtual functions:

1. Only the first declaration/definition of F can have a precondition.

2. Pure virtual functions can have contracts.

3. Postconditions from a function in a base class and the overridden version in a derived class are ANDed
together.

4. If F overrides more than one virtual function due to multiple inheritance, the precondition on F is an
ORing of the preconditions of all the functions F override and the postcondition on F is an AND ing of
the postconditions of all the functions F override and F ’s own postcondition.

4



The implementation model proposed implied that all the code was generated at the callee site. This approach
allowed to address code bloat issues. For every function with a contract the compiler would generate three
functions:

1. Core function: This is the function without any checking at all.

2. Postcondition evaluator: This one calls the core function and then executes the postcondition checks.

3. Precondition evaluator: This one executes de precondition checks and the calls the postcondition
evaluator.

Still this model supports the concepts of multiple build modes, where postconditions can be activated/de-
activated when compiling the callee and preconditions can be activated/deactivated when compiling the caller.

This model requires to standardize multiple build modes which would be something new to the C++ stan-
dard. Besides, it prevents any attempt to optimize out unneeded checks.

3.3 Other languages with contract support

3.3.1 Eiffel

A classical reference in contract programming is the Eiffel language [7, 8].
A typical contract example in Eiffel is as follows:

class DICTIONARY [ELEMENT]
feature

put (x: ELEMENT; key: STRING) is
require

count <= capacity
not key.empty

ensure
has (x)
item (key) = x
count = old count + 1

end

... Interface specifications of other features ...

invariant
0 <= count
count <= capacity

end

An Eiffel implementation (section 8.8.29 of [8]) must provide facilities for enabling and disabling assertion
monitoring. It allows a variety of methods for setting the assertion monitoring level either statically (at compile
time) or dynamically (at runtime). This can be done through control information in the Eiffel text or through
outside elements such as a user interface or a configuration file.

Eiffel includes preconditions, postconditions, class invariants and loop invariants. check instructions and
loop variants. Each of this check can be activated separately either for specific classes, specific clusters or the
entire system.

At least an implementation must support the following for modes:

1. Statically disable all monitoring for the entire system.

2. Statically enable precondition monitoring for an entire system.

3. Statically enable precondition monitoring for specified classes.

4. Statically enable all assertion monitoring for an entire system.

If an assertion is violated an exception (ASSERTION VIOLATION) is raised to notify that violation.
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3.3.2 Ada 2012

Ada [9] has recently incorporated contract programming that was successfully used previously in SPARK. The
approach is rather similar to Eiffel.

procedure Push (S: in out Stack; E: in Element)
with Pre => Not Full (S),

Post => (S.Length = S’Old.Length + 1) and
(S.Data (S.Length) = E) and
(for all J in 1 .. S’Old.Length =>

S.Data (J) = S’Old.Data (J));

If an assertion is violated an exception is raised to notify that violation.

3.3.3 D

The D programming language (http://dlang.org) also provides a contract mechanism.

long square root(long x)
in
{

assert(x >= 0);
}
out (result )
{

assert((result ∗ result ) <= x && (result+1) ∗ (result+1) > x);
}
body
{

return cast(long)std.math.sqrt(cast(real)x);
}

It also allows the definition of invariants:

class Date {
int day;
int hour;

invariant // start class invariant
{

assert( 1 <= day && day <= 31 );
assert( 0 <= hour && hour < 24 );
}
}

In contrast with other options, D allows any arbitrary statement to appear in a precondition, postcondition
or invariant making necessary to use the assert statement. This also makes possible that contracts may exhibit
side effects.

Again, when a violation occurs an error is thrown. However, in release mode all checks are removed.

4 Exploring the design space

Both, library solutions and language solutions, for contract specifications exhibit advantages and drawbacks.
However, a language solution seems much more flexible and opens opportunities for better analysis of programs.

In this section, a first exploration of the design space for a language based solution is performed. The goal
is to present the alternatives for such design. In particular, the focus is in the general design and not in the
concrete syntax. Thus the specific used syntax is only for exploration.

Remark: A series of keywords are used for illustration only. Different keywords could be used. Depending on
the final design it is likely that they could be contextual keywords.

4.1 Design principles for a contracts programming mechanism

Before exploring concrete syntax and semantics, this section proposes a set of design principles to guide the rest
of the paper:
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• An operation contract should allow to express its preconditions and postconditions.

• The language should provide tools for expressing invariants at different scopes.

• Contract specification should be part of the specification of an entity (not the implementation).

• Violation of a contract and abnormal error handling should be handled orthogonally.

• Contracts should be well integrated with polymorphism.

4.2 Operation contracts

Any operation may have an associated contract formed by its preconditions and postconditions.

4.2.1 Expressing preconditions

Any operation specification may have in its declaration a list of preconditions that must be satisfied in order to
be able to run properly.

double square root(double x)
expects(x>=0.0);

Question: How are multiple preconditions expressed?

Option 1 Multiple requirement clauses.
This option allows for syntactically delimiting every precondition. This slightly related to the fact that

Eiffel’s assertions are named.

class myvector {
// ...

double get at(int i)
expects(i>= 0)
expects(i<size)
expects(vec != nullptr);

// ...
private:

double ∗ vec;
int size ;
};

However this option seems to exhibit a verbosity that cannot be easily justified. Besides, the option could
lead to developers making use of macros to get rid of this additional verbosity.

Option 2 : Single block of conditions.
A single block with multiple conditions (each one being semicolon terminated) could be used. This would

reduce the verbosity of option 1, while keeping clear separation of individual preconditions.

class myvector {
// ...

double get at(int i)
expects{

i>= 0;
i<size;
vec != nullptr ;
};

// ...
private:

double ∗ vec;
int size ;
};
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Option 3 Combine through the && operator.
This seems the simplest and more general approach, by allowing the use of general boolean operators.

class myvector {
// ...

double get at(int i)
expects(i>= 0 && i<size && vec != nullptr);

// ...
private:

double ∗ vec;
int size ;
};

One could argue that this option makes slightly more difficult to identify individual conditions or make the
code less readable. However, it is almost syntactically equivalent to option 2. Besides, existing asserts could be
easily transformed to this form.

Question: What kind of expressions should be allowed in a precondition?

Every precondition is a boolean expression that can be evaluated at run-time. However, a precondition is
an expression that should not have any semantic effect on the operation it is associated with. It only states
when the operation can be correctly run.

Thus the option taken here is to allow any boolean expression that has no side effect.

void f(int i)
expects(i++ > 0); // Not allowed: Side effect

Question: What kind of functions should be admissible to call from a precondition?

Option 1 Any function that has no side-effects.
In principle, it should be safe to call any function that is guaranteed to have no side-effects. However, it is

possible that if the function body is not visible to the point where the precondition is defined the absence of
side-effects cannot be guaranteed.

Option 2 Only constexpr functions.
This option is quite safe, although it is possible is more restricted than required. An argument favoring this

option is that it could be revised in a later version.

4.2.2 Expressing postconditions

Any operation specification may have in its declaration a list of postconditions that the developer guarantees
to be held after the operation execution.

class string {
// ...

void reserve( size type res arg=0)
expects(res arg < max size())
ensures(capacity() >= res arg);

// ...
};

The variants previously discussed for multiple conditions in preconditions could also be applied to postcon-
ditions.

Question: How should the return value be used in postconditions?

A postcondition may be established on the value returned by a function. In that case, it is important to
establish a syntax for referring the returned value.
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Option 1 Use an arbitrary name.
This could be used by following syntax from D or previous proposal for C++, where this name is an argument

to the postcondition clause.

double square root(double x)
expects(x>=0.0)
ensures(result)( result>=0.0);

Option 2 Use a keyword to refer the returned value.
An obvious choice here is to reuse the return keyword in the context of a postcondition.

double square root(double x)
expects(x>=0.0)
ensures(return>=0.0);

However, this reuse of return keyword could lead to parsing problems.

Option 3 Use the function name to reference the result.
This option makes the function name to evaluate to the result only in the context of a postcondition.

double square root(double x)
expects(x>=0.0)
ensures(square root>=0.0);

Question: How should previous values be expressed in postconditions?

In a postcondition, every argument has two values of interest. The value previous to the operation execution
and the value after the value execution. Both values may be of interest, requiring notations to make difference
between the initial value and the final value.

In the spirit of making simple things simple, the regular name of a variable should make reference (in the
context of a postcondition) to the value after the operation execution. This design decision makes necessary to
provide a mechanism to denote a previous value.

Option 1 Use an operator to denote previous value.
Such an operator should probably be named (e.g. pre, prev, old, . . . ) as any other operator has already a

meaning.

void increment(int & x)
ensures(x == pre(x) + 1);

Remark: Applying operator pre to an object implies taking a copy of that object before running the
function. Thus, it can only be applied to types that are copy-constructible

4.2.3 Invariants

Question: Should class invariants be considered?

Type invariants correspond to class level. Thus, this paper proposes to add them after a class definition.

class my vector {
// ...
}
invariant (size >= 0 && capacity >= size);

An invariant is a condition that needs to be satisfied before the execution of every public member function
and is guaranteed to be satisfied also after the execution of every public member function.

Although this paper proposes the idea of class invariants, it is acknowledged that is something that needs
further study.

Question: Should namespace invariants be considered?
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Although previous proposals have considered the idea of namespace-invariants, this paper does not address
this issue.

Question: Should loop-invariants be considered?

Loop-invariants would allow attaching invariants to a loop. One advantage is to explicitly state the conditions
that are preserved among iterations of a loop.

for (int i=0; predicate( i ); advance(i)) {
do something(i);
}
invariant(i>=0 && i< 100);

4.3 Contract checking

An issue that has been discussed for a long time is whether contracts should be checked at run-time and, if so,
whether this is something that should be removed in production builds.

One extreme position is that all checks should always remain in production builds, as pointed out by
Hoare [10]:

. . . it is absurd to make elaborate security checks on debugging runs, when no trust is put in the
results, and then remove them in production runs, when an erroneous result could be expensive or
disastrous. What would we think of a sailing enthusiast who wears his lifejacket when training on
dry land, but takes it off as soon as he goes to sea?

On the other extreme, we may find reasoning about excessive checking and associated run-time costs.
One of the reasons why the C++ standard library is able to provide a good performance is the fact that

many preconditions are documented but not checked. It is the responsibility of the caller to perform calls that
do not violate requirements. In order to avoid any hurt to that property, the default semantic is that libraries
do not include contract checking. It should be the caller the one to decide if the contract needs to be checked
or not.

Having contract checking activated by default could lead to repeatedly performing the same (or very similar
checks). This cost would be unacceptable for many kind of applications.

To achieve this goal, functions requirements are not part of operations implementation. They belong to the
operation interface. This allows that checking if needed is part of the calling code and not of the called code.

Question: How should the caller control contract checking?

Option 1 A compiler flag to control contract checking.
The basic idea is to have one or more compiler flags to enforce contract checking. One drawback of this

option is that activation/deactivation would be done externally to source code, leading to a bunch of compiled
objects for the same library. Besides, the granularity level for activation/deactivation would be the translation
unit.

Option 2 An attribute could be used to express checking.
this option would imply mandating a default and using an attribute for a block-scope to change that default.

This approach opens the door to the discussion of whether contract checking has a semantic impact on a program.
This controversial issue is not discussed here.

If the default is checked contracts, one could envision the following:

void f() {
myvector v{20}; // A vector of 20 doubles
v [2] = 3.0; // Contract checked here
v [42] = 2.1; // Contract violation

[[ unchecked]]
{

v [2] = 1.0; // OK and fast
v [99] = 0.0; // Undefined behavior
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}
}

If the default is unchecked contracts, one could envision the following:

void f() {
myvector v{20}; // A vector of 20 doubles

[[ checked ]]
{

v [2] = 3.0; // Contract checked here
v [42] = 2.1; // Contract violation
}

v [2] = 1.0; // OK and fast
v [99] = 0.0; // Undefined behavior
}

To keep backwards compatibility with existing practice in the standards library, the best option is probably
to set the default to unchecked code.

Option 3 A keyword for changing checking mode.
This option is similar to the attribute option but uses a keyword avoiding the semantic effect debate of

attributes. For example:

double get value(double ∗ v, int sz, int i)
expects(

v != nullptr &&
i >=0 &&
i < sz &&);

void f() {
double v[20];
v [2] = 3.0;
get value (v, 20, 2); // OK
double x = get value(v, 20, 30); // Undefined behavior

checked {
double y = get value(v, 20, 30); // Precondition check failed
}
}

This approach opens the opportunity for some conditions to be checked at compile time.

Question: Should there be more than one checking mode?

Option 1 Only one checking mode.
This is the simplest option where a call either checks all the contracts or performs no checking at all. One

could argue, that in some conditions checking conditions at operation entry is enough and the exit checking
should be avoided for performance reasons.

Option 2 Multiple checking modes.
This option could use a set of checking modes. Those checking modes could be a parameter for the checking

attribute or clause (or the compiler flags).
Different checking modes could be:

• none: No checking at all.

• preconditions: Only preconditions are checked.

• postconditions: Preconditions and postconditions are checked.

• full: Everything is checked.

11



Question: Will multiple versions lead to code bloat?

The object code of a function will not contain the checking as the proposed model moves this checking to
the call site. However, this does not mean that the call site needs to emit this additional code just surrounding
every checked call. If checks cannot be proved unnecessary, it might well refactor those checks into an auxiliary
function.

Of course, this issue deserves specific investigation if a language solution like the explored in this paper is
pursued.

4.4 The effects of a precondition violation

When a precondition violation happens, this is a symptom that the running program is incorrect. Thus the
default behavior should be calling terminate.

In most cases, this behavior is the desired one. However, alternate behaviors may be explored.
One option, would be to allow the programmer to set one or more contract violation handlers. When a

check fails the handler function is called.
Another option is that an exception is thrown when the contract is violated. It is relevant to remark that

the exception can be safely thrown in this case (even if the function is noexcept) as it would be thrown in the
caller side and not in the callee side.

In case of using an exception, it would be reasonable to use a standard exception (e.g. contract violation

including information about the call site (file name, line number, function, . . . ).

4.5 Strong requirements

There are functions with requirements that need to be checked always. Even those requirements may benefit
from moving the check to the call site, as they could be eventually elided under specific conditions and they
enrich the semantic information of the call site.

class vector double {
// ...

double & operator[](int i)
expects(i<size());

double & at(int i)
expects<out of range>(i<size());

// ...
};

Strong requirements will be always checked regardless the build mode or the use of any attribute or block
keyword that could inhibit other checks.

Without strong checks, preconditions would be duplicated as they would be once as preconditions and
again in the code of the function so that they could throw the specific exception. An optimizer could in some
cases eliminate the check for the precondition, but would never be able to eliminate the check in the function
implementation. Moreover, having strong preconditions allows such functions to be marked as noexcept.

4.6 Interactions with inheritance

No major problem is seen in the case of inheritance. Following the path of other existing solutions, should be
restricted to virtual functions redefinitions. The general principle is that preconditions cannot be strengthened
and postconditions cannot be weakened.

4.7 Interactions with function pointers

The fact that contracts are part of the interface and not of the implementation generates a problem with pointer
to functions and pointer to member functions.

Question: Should contracts be checked through pointer to functions?
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Option 1 No checking at all.
This is the simplest solution. The decision would be that when a function is invoked through a pointer to

function, checked (if any) is bypassed.

void f(int i) expects(i>0);

using funcptr = void (∗)(int);
funcptr g = f;
g (2); // OK

Option 2 Make contract part of the function type.
If the contract specification is made part of the function type, then the compiler will be able to generate the

contract checking code at the call site when needed.

void f(int i) expects(i>0);

using funcptr1 = void (∗)(int);
using funcptr2 = void (∗)(int) expects(i>0);
funcptr1 g = f; // Error
funcptr2 h = f; // OK
h(2); // Performs checking if needed

However, this option puts all the burden on the definition of function pointers. It also may have many
unwanted effects and questions that would need to be answered (e.g. should overloading on contracts make any
sense at all?).

4.8 Interactions with noexcept

We believe that the presented approach allows making functions with a contract noexcept as the exceptions, if
any, would be thrown in the caller site and not in the callee site.

However, this issue clearly needs further study.

4.9 Run-time versus compile-time assertions

Compile time checks should not be treated as part of a contract checking proposal as they can be better handled
as an extension to concepts.

5 Addressing centralized defensive programming

This section tries to explore how the presented solution would be addressing the issues presented in [3].

5.1 The wide versus narrow contracts debate

The importance of the distinction between wide and narrow contracts must be acknowledged. However, both
establish a contract. It is my view that the difference lies in the fact of how a violation is handled.

A wide contract only has strong preconditions. Those preconditions are never removed (regardless the
checking mode) and the always have the same effect they throw an exception.

const T & std::vector :: at( size t index) const
expects<out of range>(index<size());

A narrow contract may have weak preconditions. Those preconditions may be checked or not, depending
on the context and compilation mode.

const T & std::vector :: at( size t index) const
expects(index<size());

One of the reasons that initiated the wide versus narrow contract debate was to establish limitations to the
aggressive use on noexcept in the standard library specification. It is worth to note that the approach taking
in this paper that the contract is part of the interface and not of the implementation would eventually allow
that functions with contracts (either narrow or wide) would still be able to be marked noexcept.
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const T & std::vector :: at( size t index) const noexcept
expects<out of range>(index<size());

const T & std::vector :: at( size t index) const noexcept
expects(index<size());

5.2 Artificially widening of contracts

Expressing a weak contract is not a way of widening that contract.
Given the following example from [3]:

class date {
// ...
public:
// ...
void set ymd(int year, int month, int day); // narrow
// Set the value of this object to the specified
// ’year ’, ’month’, and ’day’. The behavior is
// undefined unless ’year ’, ’month’, and ’day’
// together represent a valid/supported date value.

We would express it:

class date {
public:

void set ymd(int y, int m, int d)
expects(valid date(y,m,d));

// ...
private:

static bool valid date(int y, int m, int d);
// Tell me if it represents a valid/supported date value

This rewriting does not change the fact that the contract is narrow. Moreover, nothing stops the writer to
mark the function as noexcept.

The reasons for not artificially widening narrow contracts (runtime cost, development cost, code size, exten-
sibility, and defensive programming) are all valid and the guideline of not widening otherwise narrow contracts
is correct.

Question: Explicitly expressing contracts as part of the interface does not widens an otherwise narrow contract

5.3 Contracts and high-level requirements

A contract solution must satisfy high-level requirements that are different for the library developer and and
application developer.

A library developer must be able to:

• Easily implement defensive checks which are active in appropriate defensive build modes. The proposed
solution easily achieves this goal as contracts can be activated, although this is not the default mode.

• Easily check that defensive checks are working as intended.

An application owner must be able to:

• Coarsely specify (at compile time) the overall runtime validation overhead.

• Specify precisely (at runtime) the action to take if an error is detected.

• Link translation units compiled with different levels of runtime validation.

This goals are achieved as it is the client the one who makes the choice on whether checks are activated or
deactivated.
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5.4 Examples

5.4.1 Contract checking

std :: size t other strlen (onst char ∗ str)
{

CONTRACT ASSERT(str);
// return length
}

This example can be easily expressed as:

std :: size t other strlen (onst char ∗ str)
expects(str!=nullptr)
{

// return length
}

5.4.2 Safe contract checking

int get int array element (int ∗array, int length , int index)
{
CONTRACT ASSERT SAFE(0 <= index );
CONTRACT ASSERT SAFE(index < length);

return array[index];
}

If the distinction between a contract and a safe contract is needed, safe versions of contracts could be added.

int get int array element (int ∗array, int length , int index)
expects safe (

0<=index &&
index < length)

{
return array[index];
}

However, this mode could easily lead to may developers defaulting to this mode and resulting in over-
checking. In any case, moving the checks to the interface could allow to avoid the checks if they can be proved
unneeded.
5.4.3 Violation handling

Setting a contract violation handler is supported by this paper and no significant deviation from N3997 is seen.

5.4.4 Testing contracts

N3997 also provides a mechanism for testing that a function correctly tests against its contract. This is done via
macros TEST CONTRACT ASSERT PASS and TEST CONTRACT ASSERT FAIL. This feature is not currently addressed
in this proposal. However, mechanisms could be envisioned if this is really a needed feature.

6 A contract for string

This section outlines a partial specification of a string class.

template <typename charT, typename traits = char traits<charT>,
typename Allocator = allocator<charT> >

class basic string {
public:

explicit basic string (const Allocator & a)
expects(

data() != nullptr &&
size () == 0

);
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basic string (const basic string & str)
ensures(valid copy(str));

basic string (const basic string && str)
ensures(valid copy(str) && str. valid state ());

basic string (const basic strig & str,
size type pos, size type n = npos,
const Allocator & a = Allocator())

expects<std::out of range>(pos <= str.size())
ensures(valid copy n(str, n));

basic string (const charT ∗ s, size type n,
const Allocator & a = Allocator())

expects(s != nullptr)
ensures(valid copy n cstr(s ,n));

// ...

private:
bool valid copy(const basic string & str) const {

return data() != nullptr &&
equal(data(), data() + size , str .data(), str .data() + str. size ()) &&
size () == str.size() &&
capacity () >= size();

}

bool valid copy n(const basic string & str, size type n) const {
auto rlen = min(n, str.size ());
return data() != nullptr &&

equal(data(), data() + rlen, str .data(), str .data() + str. size ()) &&
size () == rlen &&
capacity () >= size();

}

bool valid copy n cstr(const charT ∗ s, size type n) const {
return data() != nullptr &&

equal(data(), data() + n, s , s+n) &&
size () == n &&
capacity () >= size();

}

}
invariant(size() <= capacity());
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